-
液固Gibbs自由能差是决定材料非晶转变的热力学关键因素, 但该参量在预测非晶转变和指导非晶成分设计方面仍有一些基本问题有待解决. 其中, 一个关键问题是: 作为Gibbs能差的两个核心要素, 焓与熵, 二者在决定和控制非晶转变中关系并不明确. 基于课题组系列研究结果, 本文就焓与熵在材料非晶转变中的协同性与独立性问题进行了全面探讨, 发现二者在决定非晶形成上具有很强的相关性. 理论分析和实验测量相结合, 展示了材料熔化熵与熔点粘度、混合焓等多个非晶形成经典参量之间的内在关联, 证实熔化熵与材料非晶形成之间的密切关联; 并从多个角度证实材料低熔化熵有利于非晶形成, 纠正了传统上基于经典形核理论得出的高熔化熵有利于非晶形成的认识. 研究也发现, 决定非晶形成的关键动力学与热力学参量, 如粘度和混合焓, 均可通过熔化熵得到表达. 进而论证了熔化熵在评估非晶形成、指导非晶成分设计中的可靠性和有效性, 由此提出熔化熵可作为理解指导材料非晶形成的代表性热力学参量. 系列成果为发展非晶形成热力学、深入理解材料非晶形成提供了参考与思路.Glass formation thermodynamics usually concerns the liquid-crystal Gibbs free energy difference. But, in practice, its efficiency in predicting the occurrence of the glass transition of materials and guiding the composition design is quite quantitative. In particular, it remains to be clarified to understand the relationship between and the contributions to the two fundamental quantities of enthalpy and entropy involved herein. In this paper, we study the relation between the enthalpy and the entropy involved in glass formation of various materials, and find that they are strongly correlated with each other. Theoretical and experimental analyses indicate the intrinsic correlation of the entropy of fusion with other key parameters associated with glass formation like melting viscosity and enthalpy of mixing, which confirms the close relation between the entropy of fusion and glass formation. Close inspection finds that the low entropy of fusion benefits the glass formation. Owing to the fact that the two glass-formation key variables of viscosity and enthalpy can be addressed by the entropy of fusion, we propose that the entropy of fusion be able to serve as a representative thermodynamic quantity to understand the glass formation in materials. The reliability in understanding the glass formation in terms of entropy of fusion is further verified. The studies provide a new reference for developing the glass formation thermodynamics.
-
Keywords:
- glass formation /
- phase transformation /
- thermodynamics
[1] Anderson P W 1995 Science 267 1615Google Scholar
[2] Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S 2000 J. Appl. Phys. 88 3113Google Scholar
[3] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[4] Turnbull D 1969 Contemp. Phys. 10 473Google Scholar
[5] Turnbull D, Cohen M H 1960 Modern Aspects of the Vitreous State (London: Butterworth)
[6] Uhlmann D R 1977 J. Non-Cryst. Solids 25 42Google Scholar
[7] Schmentzer J 2005 Nucleation Theory and Applications (New York: Wiley-VCH)
[8] Kalikmanov V I 2013 Nucleation Theory (Netherlands: Springer)
[9] Klement W, Willens R H, Duwez P O L 1960 Nature 187 869
[10] Jiang Z, Hu X, Zhao X 1982 J. Non-Cryst. Solids 52 235Google Scholar
[11] Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342Google Scholar
[12] Highmore R J, Greer A L 1989 Nature 339 363Google Scholar
[13] Ottou Abe M T, Viciosa M T, Correia N T, Affouard F 2018 Phys. Chem. Chem. Phys. 20 29528Google Scholar
[14] Atawa B, Correia N T, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A 2019 Phys. Chem. Chem. Phys. 21 702
[15] Kauzmann W 1949 Chem. Rev. 43 219
[16] Angell C A 1995 Science 267 1924Google Scholar
[17] Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200Google Scholar
[18] Mukherjee S, Schroers J, Johnson W L, Rhim W K, 2005 Phys. Rev. Lett. 94 245501Google Scholar
[19] Lu Z P, Ma D, Liu C T, Chang Y A 2007 Intermetallics 15 253Google Scholar
[20] Yang B, Du Y, Liu Y 2009 Trans. Nonferrous Met. Soc. China 19 78Google Scholar
[21] Chattopadhyay C, Satish Idury K S N, Bhatt J, Mondal K, Murty B S 2016 Mater. Sci. Technol. 32 380Google Scholar
[22] Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671Google Scholar
[23] Chen H S 1980 Rep. Prog. Phys. 43 353Google Scholar
[24] Kim D, Lee B J, Kim N J 2004 Intermetallics 12 1103Google Scholar
[25] Sun K H 1947 J. Am. Ceram. Soc. 30 277Google Scholar
[26] Rawson H 1956 Proc. IV Intern. Congress on Glass (Paris: Impremenic Chaix) p62
[27] Xia L, Li W H, Fang S S, Wei B C, Dong Y D 2006 J. Appl. Phys. 99 026103Google Scholar
[28] Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar
[29] Takeuchi A, Inoue A 2000 Mater. Trans., JIM 41 1372Google Scholar
[30] Busch R, Liu W, Johnson W L 1998 J. Appl. Phys. 83 4134Google Scholar
[31] Singh P K, Dubey K S 2010 J. Therm. Anal. Calorim. 100 347Google Scholar
[32] Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139Google Scholar
[33] Perepezko J H 2004 Prog. Mater. Sci. 49 263Google Scholar
[34] Fecht H J, Johnson W L 2004 Mater. Sci. Eng. A 375 2
[35] Battezzati L 1994 Mater. Sci. Eng. A 178 43Google Scholar
[36] Battezzati L, Castellero A, Rizzi P 2007 J. Non-Cryst. Solids 353 3318Google Scholar
[37] Gallington L C, Bongiorno A 2010 J. Chem. Phys. 132 174707Google Scholar
[38] Gutzow I, Schmelzer J W P, Petroff B 2008 J. Non-Cryst. Solids 354 311Google Scholar
[39] Ji X, Pan Y 2007 J. Non-Cryst. Solids 353 2443Google Scholar
[40] Fultz B 2010 Prog. Mater. Sci. 55 247Google Scholar
[41] van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11Google Scholar
[42] Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018 NPJ Comput. Mater. 4 47Google Scholar
[43] Ohsaka K, Trinh E H 1995 Appl. Phys. Lett. 66 3123Google Scholar
[44] Goldstein M, 1969 J. Chem. Phys. 51 3728Google Scholar
[45] Stillinger F H 1995 Science 267 1935Google Scholar
[46] Angell C A 2005 Phil. Trans. R. Soc. A 363 415Google Scholar
[47] Sastry S, Debenedetti P G, Stillinger F H 1998 Nature 393 554Google Scholar
[48] Bhatt J, Wu J, Xia J H, Wang Q, Dong C, Murty B S 2007 Intermetallics 15 716Google Scholar
[49] Ramakrishna Rao B, Gandhi A S, Vincent S, Bhatt J, Murty B S 2012 Trans. Indian Inst. Met. 65 559Google Scholar
[50] Zachariasen W H 1932 J. Am. Chem. Soc. 54 3841Google Scholar
[51] Johnson W L, Na J H, Demetriou M D 2016 Nat. Commun. 7 1
[52] Jiusti J, Zanotto E D, Cassar D R, Andreeta M R B 2020 J. Am. Ceram. Soc. 103 921Google Scholar
[53] Minaev V S 1978 Amorphous Semiconductors-78 (Prague: AS ChSSR) p71
[54] de Oliveira M F, Pereira F S, Bolfarini C, Kiminami C S, Botta W J 2009 Intermetallics 17 183Google Scholar
[55] Benson S W 1947 J. Chem. Phys. 15 367Google Scholar
[56] Myers R T 1979 J. Phys. Chem. 83 294Google Scholar
[57] Wessel M D, Jurs P C 1995 J. Chem. Inf. Comput. Sci. 35 841Google Scholar
[58] Wang L M, Richert R 2007 J. Phys. Chem. B. 111 3201Google Scholar
[59] Turnbull D, Cohen M H 1958 J. Chem. Phys. 29 1049Google Scholar
[60] 郑兆勃 1979 金属学报 15 155
Zheng Z B 1979 Acta. Metall. Sin. 15 155
[61] Hrubý A 1972 J. Phys. B 22 1187
[62] Inoue A 2000 Acta Mater. 48 279Google Scholar
[63] Song W X, Zhao S J 2015 J. Chem. Phys. 142 144504Google Scholar
[64] Miedema A R, de Châtel P F, de Boer F R 1980 Phys. B+C 100 1Google Scholar
[65] Basu J, Murty B S, Ranganathan S 2008 J. Alloys Compd. 465 163Google Scholar
[66] Das N, Kulkarni U D, Pabi S K, Murty B S, Dey G K 2008 Defect Diffus. Forum 279 147Google Scholar
[67] Bhatt J, Dey G K, Murty B S 2008 Metall. Mater. Trans. A 39 1543Google Scholar
[68] Ray P K, Akinc M, Kramer M J 2008 22 nd Annu. Conf. Foss. Energy Mater (Pittsburgh) 2008 p474
[69] Weeber A W 1987 J. Phys. F: Met. Phys. 17 809Google Scholar
[70] Pan Y, Zeng Y, Jing L, Zhang L, Pi J 2014 Mater. Des. 55 773Google Scholar
[71] Miracle D B 2006 Acta Mater. 54 4317Google Scholar
[72] Egami T, Waseda Y 1984 J. Non-Cryst. Solids 64 113Google Scholar
[73] Gargarella P, de Oliveira M F, Kiminami S, Pauly S, Kühn U, Bolfarini C, Botta W J, Eckert J 2011 J. Alloys Compd. 50 9
[74] Hu Y C, Schroers J, Shattuck M D, O’Hern C S 2019 Phys. Rev. Mater. 3 085602Google Scholar
[75] Greer A L 1993 Nature 366 30
[76] Zhang W, Liaw P K, Zhang Y 2018 Sci. China Mater. 61 2Google Scholar
[77] Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G, Lu Z 2018 Nature 563 546Google Scholar
[78] Zhao L R, Li Z J, Gao Y Q, Bo H, Liu Y D, Wang L M 2016 Intermetallics 71 18Google Scholar
[79] Gibbs J H, DiMarzio E A 1958 J. Chem. Phys. 28 373Google Scholar
[80] Mansoori G A, Carnahan N F, Starling K E, Leland Jr T W 1971 J. Chem. Phys. 54 1523Google Scholar
[81] Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810Google Scholar
[82] Guo J, Bian X, Li X, Zhang C 2010 Intermetallics 18 933Google Scholar
[83] Li X, Song K, Wu Y, Ji H, Wang L 2013 Mater. Lett. 107 17Google Scholar
[84] Vincent S, Peshwe D R, Murty B S, Bhatt J 2011 J. Non-Cryst. Solids 357 3495Google Scholar
[85] Wang L M, Richert R 2007 Phys. Rev. Lett. 99 185701Google Scholar
[86] Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar
[87] Stillinger F H, Debenedetti P G 1999 J. Phys. Chem. B 103 4052Google Scholar
[88] Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901Google Scholar
[89] Louzguine-Luzgin D V, Inoue A 2007 J. Mater. Res. 22 1378Google Scholar
[90] Uhlmann D R 1983 J. Am. Ceram. Soc. 66 95Google Scholar
[91] Jackson K A 2002 Interface Sci. 10 159Google Scholar
[92] Ediger M D, Harrowell P, Yu L 2008 J. Chem. Phys. 128 034709Google Scholar
[93] Gutzow I, Schmelzer J 1995 The Vitreous State (Berlin-New York: Springer)
[94] Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620Google Scholar
[95] Wang L M, Tian Y, Liu R, Wang W 2012 Appl. Phys. Lett. 100 261913Google Scholar
[96] Senkov O N, Miracle D B, Mullens H M 2005 J. Appl. Phys. 97 103502Google Scholar
[97] Turnbull D 1981 Metall. Trans. B 12 217Google Scholar
[98] Li D, Herlach D M 1996 Phys. Rev. Lett. 77 1801Google Scholar
[99] Wang Q, Wang L M, Ma M Z, Binder S, Volkmann T, Herlach D M, Wang J S, Xue Q G, Tian Y J, Liu R P 2011 Phys. Rev. B 83 014202Google Scholar
[100] Hoffmann H J 2005 Phys. Chem. Glasses 46 570
[101] Gao P, Tu W, Li P, Wang L M 2018 J. Alloys Compd. 736 12Google Scholar
[102] Pelton A D, Degterov S A, Eriksson G, Robelin C, Dessureault Y 2000 Metall. Mater. Trans. B 31 651Google Scholar
[103] Hillert M 2008 Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis (London: Cambridge University Press)
[104] Qian H 1998 J. Chem. Phys. 109 10015Google Scholar
[105] Meyer W V, Neldel H 1937 Z. Tech. Phys. 18 588
[106] Constable F H 1925 Proc. R. Soc. London, Ser. A 108 355Google Scholar
[107] Exner O 1964 Collection Czechoslov. Chem. Commun. 29 1094Google Scholar
[108] Cornish-Bowden A 2002 J. Biosci. 27 121Google Scholar
[109] Barrie P J 2012 Phys. Chem. Chem. Phys. 14 327Google Scholar
[110] Graziano G 2004 J. Chem. Phys. 120 4467Google Scholar
[111] 赖国华, 周仁贤, 韩晓祥, 郑小明 2005 化学通报 12 928Google Scholar
Lai G H, Zhou R X, Han X X, Zheng X M 2005 Chem. Bull. 12 928Google Scholar
[112] Galwey A K 1977 Adv. Catal. 26 247
[113] Starikov E B, Nordén B 2007 J. Phys. Chem. B 111 14431Google Scholar
[114] Ryu S, Kang K, Cai W 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5174Google Scholar
[115] Sharp K 2001 Protein Sci. 10 661Google Scholar
[116] Eyring H 1935 J. Chem. Phys. 3 107Google Scholar
[117] Liu L, Guo Q X 2001 Chem. Rev. 101 673Google Scholar
[118] Pan A, Biswas T, Rakshit A K, Moulik S P 2015 J. Phys. Chem. B 119 15876Google Scholar
[119] Shimakawa K, Abdel-Wahab F 1997 Appl. Phys. Lett. 70 652Google Scholar
[120] Song H W, Guo S R, Lu D Z, Xu Y, Wang Y L, Lin D L, Hu Z Q 2000 Scr. Mater. 42 917Google Scholar
[121] Wang Y J, Ishii A, Ogata S 2013 Acta Mater. 61 3866Google Scholar
[122] Wang Y J, Zhang M, Liu L, Ogata S, Dai L H 2015 Phys. Rev. B 92 174118Google Scholar
[123] Lu J, Ravichandran G, Johnson W L 2003 Acta Mater. 51 3429Google Scholar
[124] Wang L M, Tian Y J, Liu R P, Richert R 2008 J. Chem. Phys. 128 084503Google Scholar
[125] Kubaschewski O, Evans A L, Alcock C B 1967 Metallurgical thermochemistry (New York: Pergamon Press) p427
[126] Swalin R A, Arents J 1962 J. Electrochem. Soc. 109 308CGoogle Scholar
[127] Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171Google Scholar
[128] Greet R J, Magill J H 1967 J. Phys. Chem. 71 1746Google Scholar
[129] Reiner M 1964 Phys. Today 17 62
[130] Blackburn F R, Wang C Y, Ediger M D 1996 J. Phys. Chem. 100 18249Google Scholar
[131] Senkov O N, Miracle D B 2003 J. Non-Cryst. Solids 317 34Google Scholar
[132] Yang X, Liu R, Yang M, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003Google Scholar
[133] Wei D, Yang J, Jiang M Q, Dai L H, Wang Y J, Dyre J C, Douglass I, Harrowell P 2019 J. Chem. Phys. 150 114502Google Scholar
[134] Han D, Wei D, Yang J, Li H L, Jiang M Q, Wang Y J, Dai L H, Zaccone A 2020 Phys. Rev. B 101 014113Google Scholar
[135] Nettleton R E, Green M S 1958 J. Chem. Phys. 29 1365Google Scholar
[136] Mittal J, Errington J R, Truskett T M 2006 J. Chem. Phys. 125 076102Google Scholar
[137] Tiwari G P, Juneja J M, Iijima Y 2004 J. Mater. Sci. 39 1535Google Scholar
[138] Tiwari G P 1978 Met. Sci. Heat Treat. 12 317
[139] Jackson K A 1969 Crystal Growth Kinetics and Morphology. In Kinetics of Reactions in Ionic Systems (Boston: Springer) p229
[140] Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816Google Scholar
[141] Tallon J L 1980 Phys. Lett. A 76 139Google Scholar
[142] Tallon J L 1989 Nature 342 658Google Scholar
[143] Chen W, Wang Y, Qiang J, Dong C 2003 Acta Mater. 51 1899Google Scholar
[144] Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar
[145] Saini M K, Jin X, Wu T, Liu Y, Wang L M 2018 J. Chem. Phys. 148 124504Google Scholar
[146] 卢柯 1992 金属学报 2 8
Lu K 1992 Acta Metall. Sin. 2 8
[147] Wang L, Li Z, Chen Z, Zhao Y, Liu R, Tian Y 2010 J. Phys. Chem. B 114 12080Google Scholar
[148] Zhang Y, Li P, Gao P, Tu W, Wang L M 2017 J. Mater. Sci. 52 2924Google Scholar
[149] Kang H, Wang L M unpublished
[150] Tu W, Li X, Chen Z, Liu Y D, Labardi M, Capaccioli S, Paluch M, Wang L M 2016 J. Chem. Phys. 144 174502Google Scholar
[151] Wunderlich B 1960 J. Phys. Chem. 64 1052Google Scholar
[152] Moynihan C T, Angell C A 2000 J. Non-Cryst. Solids 274 131Google Scholar
[153] Takeda K, Yamamuro O, Tsukushi I, Matsuo T, Suga H 1999 J. Mol. Struct. 479 227Google Scholar
[154] Mishra R K, Dubey K S 1997 J. Therm. Anal. 50 843Google Scholar
[155] Chang S S, Bestul A B 1972 J. Chem. Phys. 56 503Google Scholar
[156] Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505Google Scholar
[157] Li P, Gao P, Liu Y, Wang L M 2017 J. Alloys Compd. 696 754Google Scholar
[158] Ubbelohde A R 1978 The Molten State of Matter: Melting and Crystal Structure (Chichester: John Wiley & Sons)
[159] Oriani R A 1951 J. Chem. Phys. 19 93Google Scholar
[160] Martinez L M, Angell C A 2001 Nature 410 663Google Scholar
[161] Lu Z P, Bei H, Liu C T 2007 Intermetallics 15 618Google Scholar
[162] Battezzati L, Greer A L 1989 Acta Metall. 37 1791Google Scholar
[163] Lide D R 2004 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press)
[164] Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y 2003 Phys. Rev. Lett. 91 015502Google Scholar
[165] Carter C B, Norton M G 2013 Ceramic Materials: Science and Engineering (New York: Springer-Verlag)
[166] Kelton K F 1991 Solid State Phys. 45 75Google Scholar
[167] Kelton K F, Greer A L 1988 Phys. Rev. B 38 10089Google Scholar
[168] Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184Google Scholar
[169] Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501Google Scholar
[170] Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer)
[171] Kolodziejczyk K, Paluch M, Grzybowska K, Grzybowski A, Wojnarowska Z, Hawelek L, Ziolo J D 2013 Mol. Pharmacol. 10 2270Google Scholar
[172] Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 19780Google Scholar
[173] Wu T, Jin X, Saini M K, Liu Y D, Ngai K L, Wang L M 2017 J. Chem. Phys. 147 134501Google Scholar
[174] Sarjeant P T, Roy R 1968 Mater. Res. Bull. 3 265Google Scholar
[175] Mukherjee S, Schroers J, Zhou Z, Johnson W L, Rhim W K 2004 Acta Mater. 52 3689Google Scholar
[176] Li P F, Wang L M unpublished.
[177] Bureau B, Boussard-Pledel C, Lucas P, Zhang X, Lucas J 2009 Molecules 14 4337Google Scholar
[178] Zhang Y, Gong H, Li P, Tian Y, Wang L M 2017 Mater. Lett. 194 149Google Scholar
[179] Zanotto E D, Cassar D R 2017 Sci. Rep. 7 1Google Scholar
[180] 翟玉春 2017 非平衡态热力学 (北京: 科学出版社)
Zhai Y C, 2017 Non-Equilibrium Thermodynamics (Beijing: Science Press) (in Chinese)
[181] Li Z, Pan S, Zhang S, Feng S, Li M, Liu R, Tian Y, Wang L M 2019 Intermetallics 109 97Google Scholar
[182] Wang Y, Yao J, Li Y 2018 J. Mater. Sci. Technol. 34 605Google Scholar
-
图 6 具有正、负混合热二元小分子共晶体系的过剩熔化熵. 左图为混合热测量曲线, 右图为共晶相图 (a), (b)、共晶点以及纯组元熔化熵(c), (d)和共晶成分过剩熔化熵(e), (f)[101]
Fig. 6. Excess entropies of fusion in binary molecular eutectics of positive and negative enthalpies of mixing. Experimental measurements of the enthalpy of mixing is shown in left panel. (a) and (b) in the right panels are the phase diagrams; (c) and (d) show the entropies of fusion of eutectics and pure components; (e) and (f) give the excess entropies of fusion of eutectics[101].
图 7 基于准化学模型在1000 ℃下计算的AB二元体系的摩尔混合热与混合熵. 假设A与B配位数为2, 短程序ΔgA-B分别为定值0, –21, –42和–84 kJ/mol四种情况[102]
Fig. 7. Calculated enthalpies and entropies of mixing in a A-B binary system in terms of quasi-chemical model with the fixed coordination number of two but varied short-range ordering ΔgA-B of 0, –21, –42 and 84 kJ/mol[102].
图 11 四个二元碲基窄带隙合金的非晶形成能力图和相图. 左图为SnTe分别与Bi2Te3 (a), Sb2Te3 (b), In2Te3(c)和Ga2Te3 (d)构成的二元体系不同组分熔体淬火样品的XRD图, 右图为相对应的二元相图, 显示固溶度的变化趋势[148]
Fig. 11. Phase diagrams and glass forming ability in four binary Tellurium-based alloys. Left panel shows the XRD patterns of the samples obtained by water-quenching in the SnTe alloys with Bi2Te3 (a), Sb2Te3 (b), In2Te3 (c) and Ga2Te3 (d). Binary phase diagrams are presented in the right panel showing the variation of solid solubility[148].
-
[1] Anderson P W 1995 Science 267 1615Google Scholar
[2] Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S 2000 J. Appl. Phys. 88 3113Google Scholar
[3] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[4] Turnbull D 1969 Contemp. Phys. 10 473Google Scholar
[5] Turnbull D, Cohen M H 1960 Modern Aspects of the Vitreous State (London: Butterworth)
[6] Uhlmann D R 1977 J. Non-Cryst. Solids 25 42Google Scholar
[7] Schmentzer J 2005 Nucleation Theory and Applications (New York: Wiley-VCH)
[8] Kalikmanov V I 2013 Nucleation Theory (Netherlands: Springer)
[9] Klement W, Willens R H, Duwez P O L 1960 Nature 187 869
[10] Jiang Z, Hu X, Zhao X 1982 J. Non-Cryst. Solids 52 235Google Scholar
[11] Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342Google Scholar
[12] Highmore R J, Greer A L 1989 Nature 339 363Google Scholar
[13] Ottou Abe M T, Viciosa M T, Correia N T, Affouard F 2018 Phys. Chem. Chem. Phys. 20 29528Google Scholar
[14] Atawa B, Correia N T, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A 2019 Phys. Chem. Chem. Phys. 21 702
[15] Kauzmann W 1949 Chem. Rev. 43 219
[16] Angell C A 1995 Science 267 1924Google Scholar
[17] Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200Google Scholar
[18] Mukherjee S, Schroers J, Johnson W L, Rhim W K, 2005 Phys. Rev. Lett. 94 245501Google Scholar
[19] Lu Z P, Ma D, Liu C T, Chang Y A 2007 Intermetallics 15 253Google Scholar
[20] Yang B, Du Y, Liu Y 2009 Trans. Nonferrous Met. Soc. China 19 78Google Scholar
[21] Chattopadhyay C, Satish Idury K S N, Bhatt J, Mondal K, Murty B S 2016 Mater. Sci. Technol. 32 380Google Scholar
[22] Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671Google Scholar
[23] Chen H S 1980 Rep. Prog. Phys. 43 353Google Scholar
[24] Kim D, Lee B J, Kim N J 2004 Intermetallics 12 1103Google Scholar
[25] Sun K H 1947 J. Am. Ceram. Soc. 30 277Google Scholar
[26] Rawson H 1956 Proc. IV Intern. Congress on Glass (Paris: Impremenic Chaix) p62
[27] Xia L, Li W H, Fang S S, Wei B C, Dong Y D 2006 J. Appl. Phys. 99 026103Google Scholar
[28] Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar
[29] Takeuchi A, Inoue A 2000 Mater. Trans., JIM 41 1372Google Scholar
[30] Busch R, Liu W, Johnson W L 1998 J. Appl. Phys. 83 4134Google Scholar
[31] Singh P K, Dubey K S 2010 J. Therm. Anal. Calorim. 100 347Google Scholar
[32] Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139Google Scholar
[33] Perepezko J H 2004 Prog. Mater. Sci. 49 263Google Scholar
[34] Fecht H J, Johnson W L 2004 Mater. Sci. Eng. A 375 2
[35] Battezzati L 1994 Mater. Sci. Eng. A 178 43Google Scholar
[36] Battezzati L, Castellero A, Rizzi P 2007 J. Non-Cryst. Solids 353 3318Google Scholar
[37] Gallington L C, Bongiorno A 2010 J. Chem. Phys. 132 174707Google Scholar
[38] Gutzow I, Schmelzer J W P, Petroff B 2008 J. Non-Cryst. Solids 354 311Google Scholar
[39] Ji X, Pan Y 2007 J. Non-Cryst. Solids 353 2443Google Scholar
[40] Fultz B 2010 Prog. Mater. Sci. 55 247Google Scholar
[41] van de Walle A, Ceder G 2002 Rev. Mod. Phys. 74 11Google Scholar
[42] Manzoor A, Pandey S, Chakraborty D, Phillpot S R, Aidhy D S 2018 NPJ Comput. Mater. 4 47Google Scholar
[43] Ohsaka K, Trinh E H 1995 Appl. Phys. Lett. 66 3123Google Scholar
[44] Goldstein M, 1969 J. Chem. Phys. 51 3728Google Scholar
[45] Stillinger F H 1995 Science 267 1935Google Scholar
[46] Angell C A 2005 Phil. Trans. R. Soc. A 363 415Google Scholar
[47] Sastry S, Debenedetti P G, Stillinger F H 1998 Nature 393 554Google Scholar
[48] Bhatt J, Wu J, Xia J H, Wang Q, Dong C, Murty B S 2007 Intermetallics 15 716Google Scholar
[49] Ramakrishna Rao B, Gandhi A S, Vincent S, Bhatt J, Murty B S 2012 Trans. Indian Inst. Met. 65 559Google Scholar
[50] Zachariasen W H 1932 J. Am. Chem. Soc. 54 3841Google Scholar
[51] Johnson W L, Na J H, Demetriou M D 2016 Nat. Commun. 7 1
[52] Jiusti J, Zanotto E D, Cassar D R, Andreeta M R B 2020 J. Am. Ceram. Soc. 103 921Google Scholar
[53] Minaev V S 1978 Amorphous Semiconductors-78 (Prague: AS ChSSR) p71
[54] de Oliveira M F, Pereira F S, Bolfarini C, Kiminami C S, Botta W J 2009 Intermetallics 17 183Google Scholar
[55] Benson S W 1947 J. Chem. Phys. 15 367Google Scholar
[56] Myers R T 1979 J. Phys. Chem. 83 294Google Scholar
[57] Wessel M D, Jurs P C 1995 J. Chem. Inf. Comput. Sci. 35 841Google Scholar
[58] Wang L M, Richert R 2007 J. Phys. Chem. B. 111 3201Google Scholar
[59] Turnbull D, Cohen M H 1958 J. Chem. Phys. 29 1049Google Scholar
[60] 郑兆勃 1979 金属学报 15 155
Zheng Z B 1979 Acta. Metall. Sin. 15 155
[61] Hrubý A 1972 J. Phys. B 22 1187
[62] Inoue A 2000 Acta Mater. 48 279Google Scholar
[63] Song W X, Zhao S J 2015 J. Chem. Phys. 142 144504Google Scholar
[64] Miedema A R, de Châtel P F, de Boer F R 1980 Phys. B+C 100 1Google Scholar
[65] Basu J, Murty B S, Ranganathan S 2008 J. Alloys Compd. 465 163Google Scholar
[66] Das N, Kulkarni U D, Pabi S K, Murty B S, Dey G K 2008 Defect Diffus. Forum 279 147Google Scholar
[67] Bhatt J, Dey G K, Murty B S 2008 Metall. Mater. Trans. A 39 1543Google Scholar
[68] Ray P K, Akinc M, Kramer M J 2008 22 nd Annu. Conf. Foss. Energy Mater (Pittsburgh) 2008 p474
[69] Weeber A W 1987 J. Phys. F: Met. Phys. 17 809Google Scholar
[70] Pan Y, Zeng Y, Jing L, Zhang L, Pi J 2014 Mater. Des. 55 773Google Scholar
[71] Miracle D B 2006 Acta Mater. 54 4317Google Scholar
[72] Egami T, Waseda Y 1984 J. Non-Cryst. Solids 64 113Google Scholar
[73] Gargarella P, de Oliveira M F, Kiminami S, Pauly S, Kühn U, Bolfarini C, Botta W J, Eckert J 2011 J. Alloys Compd. 50 9
[74] Hu Y C, Schroers J, Shattuck M D, O’Hern C S 2019 Phys. Rev. Mater. 3 085602Google Scholar
[75] Greer A L 1993 Nature 366 30
[76] Zhang W, Liaw P K, Zhang Y 2018 Sci. China Mater. 61 2Google Scholar
[77] Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G, Lu Z 2018 Nature 563 546Google Scholar
[78] Zhao L R, Li Z J, Gao Y Q, Bo H, Liu Y D, Wang L M 2016 Intermetallics 71 18Google Scholar
[79] Gibbs J H, DiMarzio E A 1958 J. Chem. Phys. 28 373Google Scholar
[80] Mansoori G A, Carnahan N F, Starling K E, Leland Jr T W 1971 J. Chem. Phys. 54 1523Google Scholar
[81] Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W, Makino A 2013 Entropy 15 3810Google Scholar
[82] Guo J, Bian X, Li X, Zhang C 2010 Intermetallics 18 933Google Scholar
[83] Li X, Song K, Wu Y, Ji H, Wang L 2013 Mater. Lett. 107 17Google Scholar
[84] Vincent S, Peshwe D R, Murty B S, Bhatt J 2011 J. Non-Cryst. Solids 357 3495Google Scholar
[85] Wang L M, Richert R 2007 Phys. Rev. Lett. 99 185701Google Scholar
[86] Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar
[87] Stillinger F H, Debenedetti P G 1999 J. Phys. Chem. B 103 4052Google Scholar
[88] Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901Google Scholar
[89] Louzguine-Luzgin D V, Inoue A 2007 J. Mater. Res. 22 1378Google Scholar
[90] Uhlmann D R 1983 J. Am. Ceram. Soc. 66 95Google Scholar
[91] Jackson K A 2002 Interface Sci. 10 159Google Scholar
[92] Ediger M D, Harrowell P, Yu L 2008 J. Chem. Phys. 128 034709Google Scholar
[93] Gutzow I, Schmelzer J 1995 The Vitreous State (Berlin-New York: Springer)
[94] Busch R, Schroers J, Wang W H 2007 MRS Bull. 32 620Google Scholar
[95] Wang L M, Tian Y, Liu R, Wang W 2012 Appl. Phys. Lett. 100 261913Google Scholar
[96] Senkov O N, Miracle D B, Mullens H M 2005 J. Appl. Phys. 97 103502Google Scholar
[97] Turnbull D 1981 Metall. Trans. B 12 217Google Scholar
[98] Li D, Herlach D M 1996 Phys. Rev. Lett. 77 1801Google Scholar
[99] Wang Q, Wang L M, Ma M Z, Binder S, Volkmann T, Herlach D M, Wang J S, Xue Q G, Tian Y J, Liu R P 2011 Phys. Rev. B 83 014202Google Scholar
[100] Hoffmann H J 2005 Phys. Chem. Glasses 46 570
[101] Gao P, Tu W, Li P, Wang L M 2018 J. Alloys Compd. 736 12Google Scholar
[102] Pelton A D, Degterov S A, Eriksson G, Robelin C, Dessureault Y 2000 Metall. Mater. Trans. B 31 651Google Scholar
[103] Hillert M 2008 Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis (London: Cambridge University Press)
[104] Qian H 1998 J. Chem. Phys. 109 10015Google Scholar
[105] Meyer W V, Neldel H 1937 Z. Tech. Phys. 18 588
[106] Constable F H 1925 Proc. R. Soc. London, Ser. A 108 355Google Scholar
[107] Exner O 1964 Collection Czechoslov. Chem. Commun. 29 1094Google Scholar
[108] Cornish-Bowden A 2002 J. Biosci. 27 121Google Scholar
[109] Barrie P J 2012 Phys. Chem. Chem. Phys. 14 327Google Scholar
[110] Graziano G 2004 J. Chem. Phys. 120 4467Google Scholar
[111] 赖国华, 周仁贤, 韩晓祥, 郑小明 2005 化学通报 12 928Google Scholar
Lai G H, Zhou R X, Han X X, Zheng X M 2005 Chem. Bull. 12 928Google Scholar
[112] Galwey A K 1977 Adv. Catal. 26 247
[113] Starikov E B, Nordén B 2007 J. Phys. Chem. B 111 14431Google Scholar
[114] Ryu S, Kang K, Cai W 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5174Google Scholar
[115] Sharp K 2001 Protein Sci. 10 661Google Scholar
[116] Eyring H 1935 J. Chem. Phys. 3 107Google Scholar
[117] Liu L, Guo Q X 2001 Chem. Rev. 101 673Google Scholar
[118] Pan A, Biswas T, Rakshit A K, Moulik S P 2015 J. Phys. Chem. B 119 15876Google Scholar
[119] Shimakawa K, Abdel-Wahab F 1997 Appl. Phys. Lett. 70 652Google Scholar
[120] Song H W, Guo S R, Lu D Z, Xu Y, Wang Y L, Lin D L, Hu Z Q 2000 Scr. Mater. 42 917Google Scholar
[121] Wang Y J, Ishii A, Ogata S 2013 Acta Mater. 61 3866Google Scholar
[122] Wang Y J, Zhang M, Liu L, Ogata S, Dai L H 2015 Phys. Rev. B 92 174118Google Scholar
[123] Lu J, Ravichandran G, Johnson W L 2003 Acta Mater. 51 3429Google Scholar
[124] Wang L M, Tian Y J, Liu R P, Richert R 2008 J. Chem. Phys. 128 084503Google Scholar
[125] Kubaschewski O, Evans A L, Alcock C B 1967 Metallurgical thermochemistry (New York: Pergamon Press) p427
[126] Swalin R A, Arents J 1962 J. Electrochem. Soc. 109 308CGoogle Scholar
[127] Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171Google Scholar
[128] Greet R J, Magill J H 1967 J. Phys. Chem. 71 1746Google Scholar
[129] Reiner M 1964 Phys. Today 17 62
[130] Blackburn F R, Wang C Y, Ediger M D 1996 J. Phys. Chem. 100 18249Google Scholar
[131] Senkov O N, Miracle D B 2003 J. Non-Cryst. Solids 317 34Google Scholar
[132] Yang X, Liu R, Yang M, Wang W H, Chen K 2016 Phys. Rev. Lett. 116 238003Google Scholar
[133] Wei D, Yang J, Jiang M Q, Dai L H, Wang Y J, Dyre J C, Douglass I, Harrowell P 2019 J. Chem. Phys. 150 114502Google Scholar
[134] Han D, Wei D, Yang J, Li H L, Jiang M Q, Wang Y J, Dai L H, Zaccone A 2020 Phys. Rev. B 101 014113Google Scholar
[135] Nettleton R E, Green M S 1958 J. Chem. Phys. 29 1365Google Scholar
[136] Mittal J, Errington J R, Truskett T M 2006 J. Chem. Phys. 125 076102Google Scholar
[137] Tiwari G P, Juneja J M, Iijima Y 2004 J. Mater. Sci. 39 1535Google Scholar
[138] Tiwari G P 1978 Met. Sci. Heat Treat. 12 317
[139] Jackson K A 1969 Crystal Growth Kinetics and Morphology. In Kinetics of Reactions in Ionic Systems (Boston: Springer) p229
[140] Li Y, Guo Q, Kalb J A, Thompson C V 2008 Science 322 1816Google Scholar
[141] Tallon J L 1980 Phys. Lett. A 76 139Google Scholar
[142] Tallon J L 1989 Nature 342 658Google Scholar
[143] Chen W, Wang Y, Qiang J, Dong C 2003 Acta Mater. 51 1899Google Scholar
[144] Yuan C C, Yang F, Xi X K, Shi C L, Holland-Moritz D, Li M Z, Hu F, Shen B L, Wang X L, Meyer A, Wang W H 2020 Mater. Today 32 26Google Scholar
[145] Saini M K, Jin X, Wu T, Liu Y, Wang L M 2018 J. Chem. Phys. 148 124504Google Scholar
[146] 卢柯 1992 金属学报 2 8
Lu K 1992 Acta Metall. Sin. 2 8
[147] Wang L, Li Z, Chen Z, Zhao Y, Liu R, Tian Y 2010 J. Phys. Chem. B 114 12080Google Scholar
[148] Zhang Y, Li P, Gao P, Tu W, Wang L M 2017 J. Mater. Sci. 52 2924Google Scholar
[149] Kang H, Wang L M unpublished
[150] Tu W, Li X, Chen Z, Liu Y D, Labardi M, Capaccioli S, Paluch M, Wang L M 2016 J. Chem. Phys. 144 174502Google Scholar
[151] Wunderlich B 1960 J. Phys. Chem. 64 1052Google Scholar
[152] Moynihan C T, Angell C A 2000 J. Non-Cryst. Solids 274 131Google Scholar
[153] Takeda K, Yamamuro O, Tsukushi I, Matsuo T, Suga H 1999 J. Mol. Struct. 479 227Google Scholar
[154] Mishra R K, Dubey K S 1997 J. Therm. Anal. 50 843Google Scholar
[155] Chang S S, Bestul A B 1972 J. Chem. Phys. 56 503Google Scholar
[156] Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505Google Scholar
[157] Li P, Gao P, Liu Y, Wang L M 2017 J. Alloys Compd. 696 754Google Scholar
[158] Ubbelohde A R 1978 The Molten State of Matter: Melting and Crystal Structure (Chichester: John Wiley & Sons)
[159] Oriani R A 1951 J. Chem. Phys. 19 93Google Scholar
[160] Martinez L M, Angell C A 2001 Nature 410 663Google Scholar
[161] Lu Z P, Bei H, Liu C T 2007 Intermetallics 15 618Google Scholar
[162] Battezzati L, Greer A L 1989 Acta Metall. 37 1791Google Scholar
[163] Lide D R 2004 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press)
[164] Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y 2003 Phys. Rev. Lett. 91 015502Google Scholar
[165] Carter C B, Norton M G 2013 Ceramic Materials: Science and Engineering (New York: Springer-Verlag)
[166] Kelton K F 1991 Solid State Phys. 45 75Google Scholar
[167] Kelton K F, Greer A L 1988 Phys. Rev. B 38 10089Google Scholar
[168] Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184Google Scholar
[169] Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501Google Scholar
[170] Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer)
[171] Kolodziejczyk K, Paluch M, Grzybowska K, Grzybowski A, Wojnarowska Z, Hawelek L, Ziolo J D 2013 Mol. Pharmacol. 10 2270Google Scholar
[172] Mauro J C, Yue Y Z, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 19780Google Scholar
[173] Wu T, Jin X, Saini M K, Liu Y D, Ngai K L, Wang L M 2017 J. Chem. Phys. 147 134501Google Scholar
[174] Sarjeant P T, Roy R 1968 Mater. Res. Bull. 3 265Google Scholar
[175] Mukherjee S, Schroers J, Zhou Z, Johnson W L, Rhim W K 2004 Acta Mater. 52 3689Google Scholar
[176] Li P F, Wang L M unpublished.
[177] Bureau B, Boussard-Pledel C, Lucas P, Zhang X, Lucas J 2009 Molecules 14 4337Google Scholar
[178] Zhang Y, Gong H, Li P, Tian Y, Wang L M 2017 Mater. Lett. 194 149Google Scholar
[179] Zanotto E D, Cassar D R 2017 Sci. Rep. 7 1Google Scholar
[180] 翟玉春 2017 非平衡态热力学 (北京: 科学出版社)
Zhai Y C, 2017 Non-Equilibrium Thermodynamics (Beijing: Science Press) (in Chinese)
[181] Li Z, Pan S, Zhang S, Feng S, Li M, Liu R, Tian Y, Wang L M 2019 Intermetallics 109 97Google Scholar
[182] Wang Y, Yao J, Li Y 2018 J. Mater. Sci. Technol. 34 605Google Scholar
计量
- 文章访问数: 15929
- PDF下载量: 675
- 被引次数: 0