-
填充低密度低Z物质的黑腔孔隙漏光是一类典型的高Z烧蚀等离子体在烧蚀及压力动态平衡下的运动问题. 本文利用简化的一维平面模型模拟了孔隙侧壁烧蚀金等离子体在CH泡沫约束作用下的运动行为, 展示了轻重物质界面在物质压和辐射压共同作用下运动的物理图象. 提出金等离子体从扩张到折返的过程对应于孔隙从收缩到打开的过程, 并给出折返时间和折返距离的解析方程, 以及二者的峰值温度三次方与CH密度成正比的规律, 同时表明在CH密度的较大变化范围内, 金等离子体的烧蚀标度指数不变. 利用改造的一维MULTI程序数值模拟的结果验证了解析理论的主要结论. 本文给出了可在较宽的温度密度范围内计算高Z等离子体做折返运动的理论公式.The energy leaking through a slot in the hohlraum filled with low-Z foams is a typical dynamic problem of the ablated high-Z plasmas. In this paper, we develop a simplified one-dimensional model to study the expansion-reverse process of the ablated Au plasmas, which corresponds to the closing-reopening process of a slot. Our work shows that its physical mechanism is the ablation pressure competing with radiation pressure difference and the material pressure of low-Z foams. The analytical formulas for the reverse time and reverse distance of the Au plasma are deduced, respectively, indicating that the cubic value for each of both peak temperatures is proportional to the density of the low-Z foams. The main conclusions of analytic theory are verified by numerical simulation through using the modified radiation-hydrodynamic program MULTI. It is shown that the power exponents of scaling law in high-Z plasma ablation keep unchanged in a wide range of density of low-Z foams. The range of validity of the model is discussed.
-
Keywords:
- high-Z plasmas /
- ablation pressure /
- confined ablation /
- low-Z foams
[1] Davidson R C 2004 National Task Force on High Energy Density Physics (Washington, DC: Office of Science and Technology Policy) pp1, 2
[2] Meng G W, Wang J G, Wang X R, Li J H, Zhang W Y 2016 Matter Rad. Extremes 1 249Google Scholar
[3] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[4] Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar
[5] Ensman L, Burrows A 1992 Astrophys. J. 393 742Google Scholar
[6] Blondin J M, Wright E B, Borkowski K J, Reynolds S P 1998 Astrophys. J. 500 342Google Scholar
[7] Vink J 2012 Astron. Astrophys. Rev. 20 49Google Scholar
[8] Laming J M, Grun J 2002 Phys. Rev. Lett. 89 125002Google Scholar
[9] Pound M W, Kane J O, Ryutov D D, Remington B A, Mizuta A 2007 Astrophys. Space Sci. 307 187Google Scholar
[10] Mizuta A, Kane J O, Pound M W, Remington B A, Ryutov D D, Takabe H 2006 Astrophys. J. 647 1151Google Scholar
[11] Armitage P J, Livio M 1998 Astrophys. J. 493 898Google Scholar
[12] Maccarone T J 2014 Space Sci. Rev. 183 101Google Scholar
[13] Marshak R E 1958 Phys. Fluids 1 24Google Scholar
[14] Zeldovich Y B, Raizer Y P 1967 Physics of Shock Waves and High Temperature Hydrodynamics Phenomena, Part II (New York: Academic) pp238-240
[15] Meng G W, Li J H, Yang J M, Zhu T, Zou S Y, Wang M, Zhang W Y 2013 Phys. Plasmas 20 092704Google Scholar
[16] Pakula R, Sigel R 1985 Phys. Fluids 28 232Google Scholar
[17] Shussman T, Heizler S I 2015 Phys. Plasmas 22 082109Google Scholar
[18] Kaiser N, Meyer-ter-Vehn J, Sigel R 1989 Phys. Fluids B 1 1747
[19] Hammer J H, Rosen M D 2003 Phys. Plasmas 10 1829Google Scholar
[20] Hurricane O A, Hammer J H 2006 Phys. Plasmas 13 113303Google Scholar
[21] Back C A, Bauer J D, Landen O L, Turner R E, Lasinski B F, Hammer J H, Rosen M D, Suter L J, Hsing W H 2000 Phys. Rev. Lett. 84 274Google Scholar
[22] Back C A, Bauer J D, Hammer J H, Lasinski B F, Turner R E, Rambo P W, Landen O L, Suter L J, Rosen M D, Hsing W H 2000 Phys. Plasmas 7 2126Google Scholar
[23] Hoarty D, Willi O, Barringer L, Vickers C, Watt R, Nazarov W 1999 Phys. Plasmas 6 2171Google Scholar
[24] Guymer T M, Moore A S, Morton J, Kline J L, Allan S, Bazin N, Benstead J, Bentley C, Comley A J, Cowan J, Flippo K, Garbett W, Hamilton C, Lanier N E, Mussack K, Obrey K, Reed L, Schmidt D W, Stevenson R M, Taccetti J M, Workman J 2015 Phys. Plasmas 22 043303Google Scholar
[25] 李三伟, 杨东, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202
Li S W, Yang D, Li X, et al. 2018 Sci. Sin.: Phys. Mech. Astron. 48 065202
[26] 蓝可, 贺贤土, 赖东显, 李双贵 2006 55 3789Google Scholar
Lan K, He X T, Lai D X, Li S G 2006 Acta Phys. Sin. 55 3789Google Scholar
[27] Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wikens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311Google Scholar
[28] Orzechowski T J, Rosen M D, Kornblum H N, Porter J L, Suter L J, Thiessen A R, Wallace R J 1996 Phys. Rev. Lett. 77 3545Google Scholar
[29] Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702Google Scholar
[30] Cooper A B R, Schneider M B, MacLaren S A, Moore A S, Young P E, Hsing W W, Seugling R, Foord M E, Sain J D, May M J, Marrs R E, Maddox B R, Lu K, Dodson K, Smalyuk V, Graham P, Foster J M, Back C A, Hund J F 2013 Phys. Plasmas 20 033301Google Scholar
[31] Moore A S, Cooper A B R, Schneider M B, MacLaren S, Graham P, Lu K, Seugling R, Satcher J, Klingmann J, Comely A J, Marrs R, May M, Widmann K, Glendinning G, Castor J, Sain J, Back C A, Hund J, Baker K, Hsing W W, Foster J, Young B, Young P 2014 Phys. Plasmas 21 063303Google Scholar
[32] Meng G W, Zou S Y, Wang M 2019 Phys. Plasmas 26 022708Google Scholar
[33] Hall G N, Jones O S, Strozzi D J, Moody J D, Turnbull D, Ralph J, Michel P A, Hohenberger M, Moore A S, Landen O L, Divol L, Bradley D K, Hinkel D E, Mackinnon A J, Town R P J, Meezan N B, Hopkins L B, Izumi N 2017 Phys. Plasmas 24 052706Google Scholar
[34] Schneider M B, MacLaren S A, Widmann K, Meezan N B, Hammer J H, Yoxall B E, Bell P M, Benedetti L R, Bradley D K, Callahan D A, Dewald E L, Doppner T, Eder D C, Edwards M J, Guymer T M, Hinkel D E, Hohenberger M, Hsing W W, Kervin M L, Kikenny J D, Landen O L, Lindl J D, May M J, Michel P, Milovich J L, Moody J D, Moore A S, Ralph J E, Regan S P, Thomas C A, Wan A S 2015 Phys. Plasmas 22 122705Google Scholar
[35] Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8Google Scholar
[36] 曾先才, 姜荣洪, 常铁强 1991 强激光与粒子束 3 477
Zeng X C, Jiang R H, Chang T Q 1991 High Power and Particle Beams 3 477
[37] Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar
[38] Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar
[39] Ramis R 2017 J. Comput. Phys. 330 173Google Scholar
[40] Pasley J, Nilson P, Willingale L, Haines M G, Notley M, Tolley M, Neely D, Nazarov W, Willi O 2006 Phys. Plasmas 13 032702Google Scholar
-
图 2 Au等离子体的左界面在不同
${d_1}$ 和${d_2}$ 条件下的(a)位移和(b)速度随时间的变化; 折返时间和折返距离分别随(c)${d_1}$ (取${d_2} = 1\;{\rm{cm}}$ ), (d)${d_2}$ (取${d_{\rm{1}}} = 50 \;{\rm{cm}}$ )的变化Fig. 2. (a) Displacement and (b) velocity of the left interface of Au plasmas versus time under the condition of different
${d_1}$ and${d_2}$ . The reverse time and distance of Au plasmas versus (c)${d_1}$ with${d_2} = 1\;{\rm{cm}}$ and (d)${d_2}$ with${d_{\rm{1}}} = 50 \;{\rm{cm}}$ .图 3 在
$T_{\rm{r}}^{} = 16 \;{\rm{MK}}$ ,${\rho _{\rm{1}}} = 0.15\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}$ 条件下,${\rm{0}}.02 \;{\text{μs}}$ 时网格的温度、速度、密度和压强随网格编号n的变化Fig. 3. Temperature, velocity, density and pressure versus cell number n at 0.02 μs under the condition of
$T_{\rm{r}}^{} = 16 \;{\rm{MK}}$ and${\rho _{\rm{1}}} = 0.15\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}$ .表 A1 b和l的拟合值随
${T_{\rm{r}}}$ 的变化Table A1. b and l versus
${T_{\rm{r}}}$ ${T_{\rm{r}}}$/MK b l $l - b$ 6 –0.47817 0.53663 1.01480 8 –0.47479 0.52883 1.00362 10 –0.46818 0.52192 0.99009 12 –0.47633 0.51626 0.99259 14 –0.47161 0.51122 0.98283 16 –0.47083 0.50764 0.97846 -
[1] Davidson R C 2004 National Task Force on High Energy Density Physics (Washington, DC: Office of Science and Technology Policy) pp1, 2
[2] Meng G W, Wang J G, Wang X R, Li J H, Zhang W Y 2016 Matter Rad. Extremes 1 249Google Scholar
[3] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[4] Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar
[5] Ensman L, Burrows A 1992 Astrophys. J. 393 742Google Scholar
[6] Blondin J M, Wright E B, Borkowski K J, Reynolds S P 1998 Astrophys. J. 500 342Google Scholar
[7] Vink J 2012 Astron. Astrophys. Rev. 20 49Google Scholar
[8] Laming J M, Grun J 2002 Phys. Rev. Lett. 89 125002Google Scholar
[9] Pound M W, Kane J O, Ryutov D D, Remington B A, Mizuta A 2007 Astrophys. Space Sci. 307 187Google Scholar
[10] Mizuta A, Kane J O, Pound M W, Remington B A, Ryutov D D, Takabe H 2006 Astrophys. J. 647 1151Google Scholar
[11] Armitage P J, Livio M 1998 Astrophys. J. 493 898Google Scholar
[12] Maccarone T J 2014 Space Sci. Rev. 183 101Google Scholar
[13] Marshak R E 1958 Phys. Fluids 1 24Google Scholar
[14] Zeldovich Y B, Raizer Y P 1967 Physics of Shock Waves and High Temperature Hydrodynamics Phenomena, Part II (New York: Academic) pp238-240
[15] Meng G W, Li J H, Yang J M, Zhu T, Zou S Y, Wang M, Zhang W Y 2013 Phys. Plasmas 20 092704Google Scholar
[16] Pakula R, Sigel R 1985 Phys. Fluids 28 232Google Scholar
[17] Shussman T, Heizler S I 2015 Phys. Plasmas 22 082109Google Scholar
[18] Kaiser N, Meyer-ter-Vehn J, Sigel R 1989 Phys. Fluids B 1 1747
[19] Hammer J H, Rosen M D 2003 Phys. Plasmas 10 1829Google Scholar
[20] Hurricane O A, Hammer J H 2006 Phys. Plasmas 13 113303Google Scholar
[21] Back C A, Bauer J D, Landen O L, Turner R E, Lasinski B F, Hammer J H, Rosen M D, Suter L J, Hsing W H 2000 Phys. Rev. Lett. 84 274Google Scholar
[22] Back C A, Bauer J D, Hammer J H, Lasinski B F, Turner R E, Rambo P W, Landen O L, Suter L J, Rosen M D, Hsing W H 2000 Phys. Plasmas 7 2126Google Scholar
[23] Hoarty D, Willi O, Barringer L, Vickers C, Watt R, Nazarov W 1999 Phys. Plasmas 6 2171Google Scholar
[24] Guymer T M, Moore A S, Morton J, Kline J L, Allan S, Bazin N, Benstead J, Bentley C, Comley A J, Cowan J, Flippo K, Garbett W, Hamilton C, Lanier N E, Mussack K, Obrey K, Reed L, Schmidt D W, Stevenson R M, Taccetti J M, Workman J 2015 Phys. Plasmas 22 043303Google Scholar
[25] 李三伟, 杨东, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202
Li S W, Yang D, Li X, et al. 2018 Sci. Sin.: Phys. Mech. Astron. 48 065202
[26] 蓝可, 贺贤土, 赖东显, 李双贵 2006 55 3789Google Scholar
Lan K, He X T, Lai D X, Li S G 2006 Acta Phys. Sin. 55 3789Google Scholar
[27] Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wikens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311Google Scholar
[28] Orzechowski T J, Rosen M D, Kornblum H N, Porter J L, Suter L J, Thiessen A R, Wallace R J 1996 Phys. Rev. Lett. 77 3545Google Scholar
[29] Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702Google Scholar
[30] Cooper A B R, Schneider M B, MacLaren S A, Moore A S, Young P E, Hsing W W, Seugling R, Foord M E, Sain J D, May M J, Marrs R E, Maddox B R, Lu K, Dodson K, Smalyuk V, Graham P, Foster J M, Back C A, Hund J F 2013 Phys. Plasmas 20 033301Google Scholar
[31] Moore A S, Cooper A B R, Schneider M B, MacLaren S, Graham P, Lu K, Seugling R, Satcher J, Klingmann J, Comely A J, Marrs R, May M, Widmann K, Glendinning G, Castor J, Sain J, Back C A, Hund J, Baker K, Hsing W W, Foster J, Young B, Young P 2014 Phys. Plasmas 21 063303Google Scholar
[32] Meng G W, Zou S Y, Wang M 2019 Phys. Plasmas 26 022708Google Scholar
[33] Hall G N, Jones O S, Strozzi D J, Moody J D, Turnbull D, Ralph J, Michel P A, Hohenberger M, Moore A S, Landen O L, Divol L, Bradley D K, Hinkel D E, Mackinnon A J, Town R P J, Meezan N B, Hopkins L B, Izumi N 2017 Phys. Plasmas 24 052706Google Scholar
[34] Schneider M B, MacLaren S A, Widmann K, Meezan N B, Hammer J H, Yoxall B E, Bell P M, Benedetti L R, Bradley D K, Callahan D A, Dewald E L, Doppner T, Eder D C, Edwards M J, Guymer T M, Hinkel D E, Hohenberger M, Hsing W W, Kervin M L, Kikenny J D, Landen O L, Lindl J D, May M J, Michel P, Milovich J L, Moody J D, Moore A S, Ralph J E, Regan S P, Thomas C A, Wan A S 2015 Phys. Plasmas 22 122705Google Scholar
[35] Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8Google Scholar
[36] 曾先才, 姜荣洪, 常铁强 1991 强激光与粒子束 3 477
Zeng X C, Jiang R H, Chang T Q 1991 High Power and Particle Beams 3 477
[37] Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar
[38] Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar
[39] Ramis R 2017 J. Comput. Phys. 330 173Google Scholar
[40] Pasley J, Nilson P, Willingale L, Haines M G, Notley M, Tolley M, Neely D, Nazarov W, Willi O 2006 Phys. Plasmas 13 032702Google Scholar
计量
- 文章访问数: 6914
- PDF下载量: 62
- 被引次数: 0