搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效产生任意矢量光场的一种方法

齐淑霞 刘圣 李鹏 韩磊 程华超 吴东京 赵建林

引用本文:
Citation:

高效产生任意矢量光场的一种方法

齐淑霞, 刘圣, 李鹏, 韩磊, 程华超, 吴东京, 赵建林

A method of efficiently generating arbitrary vector beams

Qi Shu-Xia, Liu Sheng, Li Peng, Han Lei, Cheng Hua-Chao, Wu Dong-Jing, Zhao Jian-Lin
PDF
HTML
导出引用
  • 提出一种高效产生任意矢量光场的方法. 利用两个光束偏移器分别对两个正交线偏振分量进行分束与合束, 将传统激光模式转化为任意矢量光场. 所产生矢量光场的偏振态和相位分布通过相位型空间光调制器(SLM) 加载相应的相位实时调控. 由于光路系统中不涉及任何衍射光学元件和振幅分光元件, 光场转换效率高, 仅取决于SLM的反射率, 并且光路系统结构紧凑、稳定, 同轴性易于调节. 实验结果显示, 采用反射率为79%的相位型SLM产生矢量光场的转换效率可达到58%.
    Vector beams have been used in scientific and engineering researches due to their unique focusing properties. In recent years, many methods of generating the vector beams have been proposed, among which the spatial light modulator (SLM) is widely used based on the superposition principle with using orthogonally polarized beams. However, the energy waste is generally associated with these superposition methods. How to efficiently generate vector beams is still a hot topic. Recently, we proposed an efficient method to generate tunable vector beams by using two triangular common-path interferometers (TCPIs) as the beam splitting and combining system. However, due to the complex structure of the TCPI, the system is difficult to adjust and unstable. In addition, the optical system brings about a long optical path, and the vector beams consisting of non-eigen modes will be distorted obviously with a long distance propagation. In this paper, an improved method is proposed. We replace the TCPIs with a pair of beam displacers, which act as a beam splitter and combiner, respectively. In this setup, we can arbitrarily manipulate the polarization states and phase distributions of vector beams in real time by managing the phase diagrams load on the SLM. The whole optical system does not involve any diffractive optical elements, and has a higher conversion efficiency. The improved optical system is compact and stable, and makes the adjustment of coaxiality easier. The light energy utilization depends mainly on the reflectivity of SLM. The efficiency of generating vector beams is increased to 58% by using an SLM with a reflectivity value of 79%. Several typical vector beams with phases and tunable amplitude, including cylindrical vector beams, fractional vector beams, and vector beams with double singularities, double-mode, radially variant polarization distribution, and azimuthally and radially variant polarization distribution, are generated and verified well experimentally. This method is also expected to create high-power vector beams and play an important role in laser processing and light trapping.
      通信作者: 刘圣, shengliu@nwpu.edu.cn ; 赵建林, jlzhao@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11634010, 61675168, 11774289)、国家重点研发计划(批准号: 2017YFA0303800)、国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: U1630125)、陕西省自然科学基础研究计划(批准号: 2018JM1057)和西北工业大学研究生创意创新种子基金(批准号: ZZ2018177)资助的课题.
      Corresponding author: Liu Sheng, shengliu@nwpu.edu.cn ; Zhao Jian-Lin, jlzhao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11634010, 61675168, 11774289), the National Key Research and Development Program of China (Grant No. 2017YFA0303800), the Joint Fund of the National Natural Science Foundation of China and China Academy of Engineering Physics (Grant No. U1630125), the Basic Research Plan of the Natural Science Research Project of Shaanxi Province, China (Grant No. 2018JM1057), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. ZZ2018177).
    [1]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1Google Scholar

    [2]

    Quabis S, Dorn R, Eberler M, Glöckl O, Leuchs G 2000 Opt. Commun. 179 1Google Scholar

    [3]

    Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901Google Scholar

    [4]

    Zhao Y Q, Zhan Q W, Zhang Y, Li Y P 2005 Opt. Lett. 30 848Google Scholar

    [5]

    Kozawa Y, Sato S 2006 Opt. Lett. 31 820Google Scholar

    [6]

    Wang H F, Shi L P, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photonics 2 501Google Scholar

    [7]

    Li P, Guo X Y, Qi S X, Han L, Zhang Y, Liu S, Li Y, Zhao J L 2018 Sci. Rep. 8 9831Google Scholar

    [8]

    Liu S, Wang M R, Li P, Zhang P, Zhao J L 2013 Opt. Lett. 38 2416Google Scholar

    [9]

    Liu S, Li P, Zhang Y, Gan X, Wang M, Zhao J 2016 Sci. Rep. 6 20774Google Scholar

    [10]

    Zhou J, Zhang W, Liu Y, Ke Y, Liu Y, Luo H, Wen S 2016 Sci. Rep. 6 34276Google Scholar

    [11]

    Wei B Y, Chen P, Hu W, Ji W, Zheng L Y, Ge S J, Ming Y, Chigrinov V, Lu Y Q 2015 Sci. Rep. 5 17484Google Scholar

    [12]

    Cardano F, Marrucci L 2015 Nat. Photonics 9 776Google Scholar

    [13]

    Zhang Y, Li P, Liu S, Han L, Cheng H, Zhao J 2016 Opt. Express 24 28409Google Scholar

    [14]

    Li P, Liu S, Peng T, Xie G, Gan X, Zhao J 2014 Opt. Express 22 7598Google Scholar

    [15]

    Li P, Wu D, Zhang Y, Liu S, Li Y, Qi S, Zhao J 2018 Photon. Res. 6 756Google Scholar

    [16]

    Cheng H C, Li P, Liu S, Chen P, Han L, Zhang Y, Hu W, Zhao J L 2017 Appl. Phys. Lett. 111 141901Google Scholar

    [17]

    Xie X S, Chen Y Z, Yang K, Zhou J Y 2014 Phys. Rev. Lett. 113 263901Google Scholar

    [18]

    Nieminen T A, Heckenberg N R, Rubinsztein D H 2008 Opt. Lett. 33 122Google Scholar

    [19]

    Wang X L, Chen J, Li Y, Ding J, Guo C S, Wang H T 2010 Phys. Rev. Lett. 105 253602Google Scholar

    [20]

    Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R 2015 Opt. Lett. 40 4887Google Scholar

    [21]

    Pohl D 1972 Appl. Phys. Lett. 20 266Google Scholar

    [22]

    Kozawa Y, Sato S 2005 Opt. Lett. 30 3063Google Scholar

    [23]

    Bisson J F, Li J, Ueda K, Senatsky Y 2006 Opt. Express 14 3304Google Scholar

    [24]

    Lai W J, Lim B C, Phua P B, Tiaw K S, Teo H H, Hong M H 2008 Opt. Express 16 15694Google Scholar

    [25]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 285Google Scholar

    [26]

    Cardano F, Karimi E, Slussarenko S, Marrucci L, de Lisio C, Santamato E 2012 Appl. Opt. 51 C1Google Scholar

    [27]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207Google Scholar

    [28]

    Li P, Zhang Y, Liu S, Ma C J, Han L, Cheng H C, Zhao J L 2016 Opt. Lett. 41 2205Google Scholar

    [29]

    Zhang Y, Li P, Ma C J, Liu S, Cheng H C, Zhao J L, Han L 2017 Appl. Opt. 56 4956Google Scholar

    [30]

    Christian M, Alexander J, Severin F, Stefan B, Monika R M 2007 New J. Phys. 9 78Google Scholar

    [31]

    Liu S, Li P, Peng T, Zhao J 2012 Opt. Express 20 21715Google Scholar

    [32]

    Wang X L, Ding J P, Ni W J, Guo C S, Wang H T 2007 Opt. Lett. 32 3549Google Scholar

    [33]

    Liu S, Qi S X, Zhang Y, Li P, Wu D J, Han L, Zhao J L 2018 Photon. Res. 6 228Google Scholar

    [34]

    Liu S, Han L, Li P, Zhang Y, Cheng H, Zhao J 2017 Appl. Phys. Lett. 110 171112Google Scholar

  • 图 1  可产生任意矢量光场的实验光路 HWP, 半波片; BD, 光束偏移器; RAPM, 直角反射棱镜; SLM, 空间光调制器; QWP, 1/4波片; L, 透镜; P, 检偏器; CCD, 电荷耦合器件; 插图表示±1阶相位

    Fig. 1.  Experimental setup for generating arbitrary vector beams. HWP, half-wave plate; BD, beam displacer; RAPM, right-angle prism mirror; SLM, spatial light modulator; QWP, quarter-wave plate; L, lens; P, polarizer; CCD, charge-coupled device; the inset shows the first-order helix phase map.

    图 2  柱矢量光场的实验产生结果 (a) m = 1, $ \phi$0 = 0; (b) m = 1, $ \phi$0 = $ \text{π}$/2; (c) m = 2, $ \phi$0 = 0; (d) m = 5, $ \phi$0 = 0; 第一行为光场强度分布和偏振态分布(由短线表示);第二、三行为分别经水平和竖直方向检偏后的光场强度分布

    Fig. 2.  Experiment results of cylindrical vector beams: (a) m = 1, $ \phi$0 = 0; (b) m = 1, $ \phi$0 = $ \phi$/2; (c) m = 2, $ \phi$0 = 0; (d) m = 5, $ \phi$0 = 0. The first column: intensity distributions of light fields with polarizations marked with short lines; the second and third columns: intensity distributions of light fields passing through the horizontal and vertical polarizers, respectively.

    图 3  携带涡旋相位的柱矢量光场的实验结果 (a) m1 = 2, m2 = 0, $\phi $0 = 0; (b) m1 = 5, m2 = −1, $\phi $0 = 0. 第一列为光场强度分布和偏振态分布;第二、三列为分别经水平和竖直方向检偏后的光场强度分布

    Fig. 3.  Experiment results of cylindrical vector beams with vortex phase: (a) m1 = 2, m2 = 0, $\phi $0 = 0; (b) m1 = 5, m2 = −1, $\phi $0 = 0. The first column: intensity and polarizations distributions of light fields; the second and third columns: intensity distributions of light field passing through the horizontal and vertical polarizers, respectively.

    图 4  分数阶矢量光场的实验结果 (a) m = 1/2, $\phi $0 = 0; (b) m = 3/2, $\phi $0 = 0. 第一列为光场强度和偏振态分布; 第二、三列为分别经水平和竖直方向检偏后的光场强度分布

    Fig. 4.  Experiment results of fractional vector beams: (a) m = 1/2, $\phi $0 = 0; (b) m = 3/2, $\phi $0 = 0. The first column: intensity and polarizations distributions of light fields; the second and third columns: intensity distributions of light field passing through the horizontal and vertical polarizers, respectively.

    图 5  双奇点矢量光场的实验结果 (a) m1 = m2 = 1, $\phi $0 = 0; (b) m1 = −m2 = 1, $\phi $0 = 0. 第一列为光场强度和偏振态分布, 第二、三列为分别经水平和竖直方向检偏后的光场强度分布

    Fig. 5.  Experiment results of vector beams with double singularities: (a) m1 = m2 = 1, $\phi $0 = 0; (b) m1 = −m2 = 1, $\phi $0 = 0. The first column: intensity and polarizations distributions of light fields; the second and third columns: intensity distributions of light field passing through the horizontal and vertical polarizers, respectively.

    图 6  其他几种矢量光场的实验结果 (a) 双模矢量光场; (b) 偏振态沿径向变化矢量光场; (c) 偏振态沿角向与径向同时变化矢量光场. 第一行为光场强度分布和偏振态分布; 第二、三行为分别经水平和竖直方向检偏后的光场强度分布

    Fig. 6.  Experiment results of other vector beams: (a) Double-mode vector beam; (b) vector beam with radially variant polarization distribution; (c) vector beam with azimuthally and radially variant polarization distribution. The first column: intensity distributions and polarizations of light fields; the second and third columns: intensity distributions of light fields passing through the horizontal and vertical polarizers, respectively.

    Baidu
  • [1]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1Google Scholar

    [2]

    Quabis S, Dorn R, Eberler M, Glöckl O, Leuchs G 2000 Opt. Commun. 179 1Google Scholar

    [3]

    Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901Google Scholar

    [4]

    Zhao Y Q, Zhan Q W, Zhang Y, Li Y P 2005 Opt. Lett. 30 848Google Scholar

    [5]

    Kozawa Y, Sato S 2006 Opt. Lett. 31 820Google Scholar

    [6]

    Wang H F, Shi L P, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photonics 2 501Google Scholar

    [7]

    Li P, Guo X Y, Qi S X, Han L, Zhang Y, Liu S, Li Y, Zhao J L 2018 Sci. Rep. 8 9831Google Scholar

    [8]

    Liu S, Wang M R, Li P, Zhang P, Zhao J L 2013 Opt. Lett. 38 2416Google Scholar

    [9]

    Liu S, Li P, Zhang Y, Gan X, Wang M, Zhao J 2016 Sci. Rep. 6 20774Google Scholar

    [10]

    Zhou J, Zhang W, Liu Y, Ke Y, Liu Y, Luo H, Wen S 2016 Sci. Rep. 6 34276Google Scholar

    [11]

    Wei B Y, Chen P, Hu W, Ji W, Zheng L Y, Ge S J, Ming Y, Chigrinov V, Lu Y Q 2015 Sci. Rep. 5 17484Google Scholar

    [12]

    Cardano F, Marrucci L 2015 Nat. Photonics 9 776Google Scholar

    [13]

    Zhang Y, Li P, Liu S, Han L, Cheng H, Zhao J 2016 Opt. Express 24 28409Google Scholar

    [14]

    Li P, Liu S, Peng T, Xie G, Gan X, Zhao J 2014 Opt. Express 22 7598Google Scholar

    [15]

    Li P, Wu D, Zhang Y, Liu S, Li Y, Qi S, Zhao J 2018 Photon. Res. 6 756Google Scholar

    [16]

    Cheng H C, Li P, Liu S, Chen P, Han L, Zhang Y, Hu W, Zhao J L 2017 Appl. Phys. Lett. 111 141901Google Scholar

    [17]

    Xie X S, Chen Y Z, Yang K, Zhou J Y 2014 Phys. Rev. Lett. 113 263901Google Scholar

    [18]

    Nieminen T A, Heckenberg N R, Rubinsztein D H 2008 Opt. Lett. 33 122Google Scholar

    [19]

    Wang X L, Chen J, Li Y, Ding J, Guo C S, Wang H T 2010 Phys. Rev. Lett. 105 253602Google Scholar

    [20]

    Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R 2015 Opt. Lett. 40 4887Google Scholar

    [21]

    Pohl D 1972 Appl. Phys. Lett. 20 266Google Scholar

    [22]

    Kozawa Y, Sato S 2005 Opt. Lett. 30 3063Google Scholar

    [23]

    Bisson J F, Li J, Ueda K, Senatsky Y 2006 Opt. Express 14 3304Google Scholar

    [24]

    Lai W J, Lim B C, Phua P B, Tiaw K S, Teo H H, Hong M H 2008 Opt. Express 16 15694Google Scholar

    [25]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 285Google Scholar

    [26]

    Cardano F, Karimi E, Slussarenko S, Marrucci L, de Lisio C, Santamato E 2012 Appl. Opt. 51 C1Google Scholar

    [27]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207Google Scholar

    [28]

    Li P, Zhang Y, Liu S, Ma C J, Han L, Cheng H C, Zhao J L 2016 Opt. Lett. 41 2205Google Scholar

    [29]

    Zhang Y, Li P, Ma C J, Liu S, Cheng H C, Zhao J L, Han L 2017 Appl. Opt. 56 4956Google Scholar

    [30]

    Christian M, Alexander J, Severin F, Stefan B, Monika R M 2007 New J. Phys. 9 78Google Scholar

    [31]

    Liu S, Li P, Peng T, Zhao J 2012 Opt. Express 20 21715Google Scholar

    [32]

    Wang X L, Ding J P, Ni W J, Guo C S, Wang H T 2007 Opt. Lett. 32 3549Google Scholar

    [33]

    Liu S, Qi S X, Zhang Y, Li P, Wu D J, Han L, Zhao J L 2018 Photon. Res. 6 228Google Scholar

    [34]

    Liu S, Han L, Li P, Zhang Y, Cheng H, Zhao J 2017 Appl. Phys. Lett. 110 171112Google Scholar

  • [1] 王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖. 基于空间光调制器构建二维任意形状的87Rb原子阵列.  , 2023, 72(6): 064201. doi: 10.7498/aps.72.20222096
    [2] 王富杰, 曹晓昱, 高超, 文雪可, 雷兵. 基于矢量光场空间调制的光波偏振方向解算方法研究.  , 2023, 72(1): 010201. doi: 10.7498/aps.72.20221745
    [3] 喻欢欢, 张晨爽, 林丹樱, 于斌, 屈军乐. 基于高速相位型空间光调制器的双光子多焦点结构光显微技术.  , 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [4] 赵顾颢, 毛少杰, 赵尚弘, 蒙文, 祝捷, 张小强, 王国栋, 谷文苑. 双旋光双反射结构的温度-辐射自稳定性原理和实验研究.  , 2019, 68(16): 164202. doi: 10.7498/aps.68.20190429
    [5] 白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠. 基于空间光调制器的非相干数字全息单次曝光研究.  , 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [6] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信.  , 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [7] 王吉明, 赫崇君, 刘友文, 杨凤, 田威, 吴彤. 基于可调谐复振幅滤波器的超长焦深矢量光场.  , 2016, 65(4): 044202. doi: 10.7498/aps.65.044202
    [8] 王美洁, 贾维国, 张思远, 门克内木乐, 杨军, 张俊萍. 低双折射光纤中拉曼增益对光偏振态的影响.  , 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [9] 刘绩林, 陈子阳, 张磊, 蒲继雄. 角向偏振无衍射光束的传输特性及其偏振态研究.  , 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [10] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于光学全息的任意矢量光的生成方法.  , 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [11] 马骏, 袁操今, 冯少彤, 聂守平. 基于数字全息及复用技术的全场偏振态测试方法.  , 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [12] 王强, 关宝璐, 刘克, 史国柱, 刘欣, 崔碧峰, 韩军, 李建军, 徐晨. 表面液晶-垂直腔面发射激光器温度特性的研究.  , 2013, 62(23): 234206. doi: 10.7498/aps.62.234206
    [13] 周巧巧, 徐淑武, 陆俊发, 周琦, 纪宪明, 印建平. 液晶空间光调制器产生可调三光学势阱.  , 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [14] 赵顾颢, 赵尚弘, 幺周石, 郝晨露, 蒙文, 王翔, 朱子行, 刘丰. 偏振无关的旋光双反射结构的实验研究.  , 2013, 62(13): 134201. doi: 10.7498/aps.62.134201
    [15] 顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平. 用液晶空间光调制器产生光阱阵列.  , 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [16] 徐淑武, 周巧巧, 顾宋博, 纪宪明, 印建平. 用空间光调制器产生三维光阱阵列.  , 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [17] 张宣妮, 张淳民. 静态偏振风成像干涉仪光传输特性和光通量改善.  , 2012, 61(10): 104210. doi: 10.7498/aps.61.104210
    [18] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究.  , 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [19] 王 琛, 袁景和, 王桂英, 徐至展. 入射光的偏振特性对全内反射荧光显微术中荧光激发的影响.  , 2003, 52(12): 3014-3019. doi: 10.7498/aps.52.3014
    [20] 苏慧敏, 郑锡光, 王霞, 许剑锋, 汪河洲. 计算机模拟偏振对激光全息的影响.  , 2002, 51(5): 1044-1048. doi: 10.7498/aps.51.1044
计量
  • 文章访问数:  12651
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-08
  • 修回日期:  2018-10-25
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map