搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Λ型三能级原子与两个谐振器的量子相位门

刘超 邬云文

引用本文:
Citation:

Λ型三能级原子与两个谐振器的量子相位门

刘超, 邬云文

Quantum phase gate on a single superconducting Λ-type three-level and two superconducting resonators

Liu Chao, Wu Yun-Wen
PDF
导出引用
  • 量子纠缠的生成和操控在量子通信和量子信息处理中具有广泛的应用价值.通过构建单个Λ 型三能级原子和两个超导谐振器之间相互耦合的模型,给出了实现控制Z门(Controlled-Z)的四种操作方案和实现交换门(Swap)的两种操作方案;同时对实现控制Z门的第一种操作方案进行了保真度的数值模拟仿真.结果表明:通过20.83 ns 的运行时间,其保真度为96.67%,而衰减率、弛豫速率和移相比率的增加会降低系统的保真度,而耦合强度的增加会减少系统的运行时间,从而减小衰减参数的影响,提高系统的保真度.
    Quantum phase gate is a necessary quantum component for quantum coding and quantum computing. Compared with the traditional gate circuit, quantum phase gate has the characteristics of unitarity and reversibility. Therefore, we construct a model of mutual coupling between a single Λ -type three-level atom and two superconducting resonators, which is connected by a capacitor. By separately controlling the disconnection time and connection time of the two superconducting resonators in the model as well as by controlling the magnetic flux of the superconducting quantum interference device (SQUID) to make a certain transition energy level of the Λ -type three-level atom equal the relevant resonance energy level, the interaction between the two levels can be achieved and the system can be manipulated. Afterwards, we propose four control schemes for implementing the controlled-Z gate through a three-step operation, and two operation schemes for implementing swap gate through a four-step operation. At the same time, the numerical simulations of fidelity are implemented for the first operation scheme for controlling the Z-gate. The results of fidelity discussion show that the fidelity of this scheme is 96.67% through the running time of 20.83 ns, thus it proves that this scheme is theoretically feasible. The increase in the three attenuation parameters, i.e., attenuation rate, relaxation rate, and phase shift ratio, will reduce the fidelity of the system, while the increase in coupling strength will cut down the time of system operation, thus reducing the influence of attenuation parameters and improving the system fidelity.In this paper we present a quantum phase gate scheme in which two superconducting resonators and a Λ -type three-level atom are coupled with two capacitors. Since the experimental setup is simplified, it is important to reduce the coherence between devices. In addition, the solution has no restriction on the strength of the classic pulse principally, through which the system operates faster and the fidelity of the phase gate is improved effectively.
      通信作者: 邬云文, wuyw_jd@163.com
    • 基金项目: 国家自然科学基金(批准号:11564014)和湖南省自然科学基金(批准号:2015JJ6092,2016JJ6123)资助的课题.
      Corresponding author: Wu Yun-Wen, wuyw_jd@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11564014) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ6092, 2016JJ6123).
    [1]

    Ren B C, Deng F G 2015 Acta Phys. Sin. 64 160303 (in Chinese)[任宝藏, 邓富国 2015 64 160303]

    [2]

    Li M, Chen Y, Guo G C, Ren X F 2017 Acta Phys. Sin. 66 144202 (in Chinese)[李明, 陈阳, 郭光灿, 任希峰 2017 66 144202]

    [3]

    Brune M, Hagley E, Dreyer J, et al. 1996 Phys. Rev. Lett. 77 4887

    [4]

    Sleator T, Weinfurter H 1995 Phys. Rev. Lett. 74 4087

    [5]

    Yang C P, Han S 2005 Phys. Rev. A 72 032311

    [6]

    Peng J, Wu Y W, Li X J 2011 Acta Phot. Sin. 40 466 (in Chinese)[彭俊, 邬云文, 李小娟 2011 光子学报 40 466]

    [7]

    You J Q, Nori F 2011 Nature 474 589

    [8]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [9]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E 2013 Phys. Rev. Lett. 111 080502

    [10]

    Clarke J, Wilhelm F K 2008 Nature 453 1031

    [11]

    Filipp S, Maurer P, Leek P J, et al. 2009 Phys. Rev. Lett. 102 200402

    [12]

    Reed M D, Carlo L D, Johnson B R, Sun L, Schuster D I 2010 Phys. Rev. Lett. 105 173601

    [13]

    Yang C P, Chu S I, Han S 2003 Phys. Rev. A 67 042311

    [14]

    Majer J, Chow J M, Gambetta J M, Johnson B R 2007 Nature 449 7161

    [15]

    Dicarlo L, Chow J M, Gambetta J M, Bishop L B 2009 Nature 460 7252

    [16]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [17]

    Yang C P, Chu S I, Han S 2004 Phys. Rev. Lett. 92 117902

    [18]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S 2004 Nature 431 7005

    [19]

    Chiorescu I, Bertet P, Semba K, Nakamura Y 2004 Nature 431 159

    [20]

    Strauch F W 2012 Phys. Rev. Lett. 109 210501

    [21]

    Leek P J, Filipp S, Maurer P, Baur M, Bianchetti R 2009 Phys. Rev. B 79 180511

    [22]

    Strand J D, Ware M, Beaudoin F, Ohki T A, Johnson B R 2013 Phys. Rev. B 87 220505

    [23]

    Hua M, Tao M J, Deng F G 2014 Phys. Rev. A 90 012328

    [24]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [25]

    Su Q P, Yang C P, Zheng S B 2014 Sci. Rep. 4 3898

    [26]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [27]

    Hoi I C, Wilson C M, Johansson G 2011 Phys. Rev. Lett. 107 073601

  • [1]

    Ren B C, Deng F G 2015 Acta Phys. Sin. 64 160303 (in Chinese)[任宝藏, 邓富国 2015 64 160303]

    [2]

    Li M, Chen Y, Guo G C, Ren X F 2017 Acta Phys. Sin. 66 144202 (in Chinese)[李明, 陈阳, 郭光灿, 任希峰 2017 66 144202]

    [3]

    Brune M, Hagley E, Dreyer J, et al. 1996 Phys. Rev. Lett. 77 4887

    [4]

    Sleator T, Weinfurter H 1995 Phys. Rev. Lett. 74 4087

    [5]

    Yang C P, Han S 2005 Phys. Rev. A 72 032311

    [6]

    Peng J, Wu Y W, Li X J 2011 Acta Phot. Sin. 40 466 (in Chinese)[彭俊, 邬云文, 李小娟 2011 光子学报 40 466]

    [7]

    You J Q, Nori F 2011 Nature 474 589

    [8]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [9]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E 2013 Phys. Rev. Lett. 111 080502

    [10]

    Clarke J, Wilhelm F K 2008 Nature 453 1031

    [11]

    Filipp S, Maurer P, Leek P J, et al. 2009 Phys. Rev. Lett. 102 200402

    [12]

    Reed M D, Carlo L D, Johnson B R, Sun L, Schuster D I 2010 Phys. Rev. Lett. 105 173601

    [13]

    Yang C P, Chu S I, Han S 2003 Phys. Rev. A 67 042311

    [14]

    Majer J, Chow J M, Gambetta J M, Johnson B R 2007 Nature 449 7161

    [15]

    Dicarlo L, Chow J M, Gambetta J M, Bishop L B 2009 Nature 460 7252

    [16]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [17]

    Yang C P, Chu S I, Han S 2004 Phys. Rev. Lett. 92 117902

    [18]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S 2004 Nature 431 7005

    [19]

    Chiorescu I, Bertet P, Semba K, Nakamura Y 2004 Nature 431 159

    [20]

    Strauch F W 2012 Phys. Rev. Lett. 109 210501

    [21]

    Leek P J, Filipp S, Maurer P, Baur M, Bianchetti R 2009 Phys. Rev. B 79 180511

    [22]

    Strand J D, Ware M, Beaudoin F, Ohki T A, Johnson B R 2013 Phys. Rev. B 87 220505

    [23]

    Hua M, Tao M J, Deng F G 2014 Phys. Rev. A 90 012328

    [24]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [25]

    Su Q P, Yang C P, Zheng S B 2014 Sci. Rep. 4 3898

    [26]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [27]

    Hoi I C, Wilson C M, Johansson G 2011 Phys. Rev. Lett. 107 073601

  • [1] 石中誉, 代旭城, 王浩宇, 麦展彰, 欧阳鹏辉, 王翼卓, 柴亚强, 韦联福, 刘旭明, 潘长钊, 郭伟杰, 舒诗博, 王轶文. 超导动态电感探测器的噪声谱分析.  , 2024, 73(3): 038501. doi: 10.7498/aps.73.20231504
    [2] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术.  , 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [3] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真.  , 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [4] 廖庆洪, 邓伟灿, 文健, 周南润, 刘念华. 纳米机械谐振器耦合量子比特非厄米哈密顿量诱导的声子阻塞.  , 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [5] 关佳, 顾翊晟, 朱成杰, 羊亚平. 利用相干制备的三能级原子介质实现低噪声弱光相位操控.  , 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [6] 焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰. 基于新型三环谐振器的诱导透明效应分析.  , 2015, 64(14): 144202. doi: 10.7498/aps.64.144202
    [7] 周品嘉, 王轶文, 韦联福. 应用于弱光探测的热敏超导谐振器.  , 2014, 63(7): 070701. doi: 10.7498/aps.63.070701
    [8] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度.  , 2013, 62(19): 194204. doi: 10.7498/aps.62.194204
    [9] 饶黄云, 刘义保, 江燕燕, 郭立平, 王资生. 三能级混合态的量子几何相位.  , 2012, 61(2): 020302. doi: 10.7498/aps.61.020302
    [10] 王杨婧, 谢拥军, 雷振亚. 用于射频超导量子干涉器的新型单CSRR磁通聚焦器和谐振器.  , 2012, 61(9): 094210. doi: 10.7498/aps.61.094210
    [11] 王振东, 梁变, 刘中波, 樊锡君. 飞秒啁啾Gauss型脉冲在稠密Λ型三能级原子介质中的传播.  , 2010, 59(10): 7041-7049. doi: 10.7498/aps.59.7041
    [12] 高吉, 杨涛, 马平, 戴远东. 用于高温射频超导量子干涉器的介质谐振器的性质研究.  , 2010, 59(7): 5044-5048. doi: 10.7498/aps.59.5044
    [13] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠.  , 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [14] 陶向阳, 刘金明, 刘三秋, 傅传鸿. Kerr 介质中三能级原子与双模场非共振相互作用的量子统计性质.  , 2000, 49(8): 1464-1470. doi: 10.7498/aps.49.1464
    [15] 刘三秋, 郭 琴, 陶向阳, 付传鸿. 非旋波近似下级联型三能级原子与腔场相互作用的量子动力学性质.  , 1998, 47(9): 1481-1488. doi: 10.7498/aps.47.1481
    [16] 龚尚庆, 徐至展, 潘少华. 简单三能级原子介质中由量子干涉引起的折射率增强.  , 1995, 44(7): 1051-1055. doi: 10.7498/aps.44.1051
    [17] 李孝申. 量子统计的级联三能级Jaynes-Cummings模型.  , 1985, 34(6): 833-840. doi: 10.7498/aps.34.833
    [18] 吴君汝, A. LARRAZA, I. RUDNICK. 水表面波矩型谐振器非线性共振曲线的测量.  , 1985, 34(6): 796-800. doi: 10.7498/aps.34.796
    [19] 郭光灿. 光泵三能级激光的全量子理论.  , 1984, 33(12): 1661-1672. doi: 10.7498/aps.33.1661
    [20] 方励之, 李铁城. 论三能级变频器.  , 1964, 20(12): 1199-1209. doi: 10.7498/aps.20.1199
计量
  • 文章访问数:  6140
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-26
  • 修回日期:  2018-05-28
  • 刊出日期:  2018-09-05

/

返回文章
返回
Baidu
map