搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于弱光探测的热敏超导谐振器

周品嘉 王轶文 韦联福

引用本文:
Citation:

应用于弱光探测的热敏超导谐振器

周品嘉, 王轶文, 韦联福

Thermal-sensitive superconducting coplanar waveguide resonator used for weak light detection

Zhou Pin-Jia, Wang Yi-Wen, Wei Lian-Fu
PDF
导出引用
  • 近几十年来,超导单光子探测技术被越来越广泛的应用于量子保密通信与线性光量子计算等重要领域中. 其中,基于超导共面波导谐振器的单光子技术以其结构简单,高探测效率及可分辨光子数目等特性吸引了人们越来越多的关注. 随着科研工作者对样品制备工艺的不断改进,对选用超导薄膜材料的不断优化,以及对相关背景理论的深入研究,共面波导谐振器单光子探测技术在近几年中取得了巨大的突破. 本文将从共面波导谐振器单光子探测器的工作原理,相关理论研究,样品参数设计等方面出发,结合本实验室近期测试得到的实验结果,对共面波导谐振器单光子探测技术的发展近况进行简要的综述.
    Since the last decades, superconducting single-photon technology has been extensively used in the quantum security communication and the linear-optic quantum computing fields. Especially, the device based on the coplanar waveguide resonator has attracted substantial interests due to its evident advantages, including the relatively simple structure, the sufficiently high detection efficiency, and the photon-resolving capability, etc. With the profound investigation in optimizing the depositing methods and the material selections, as well as the the development of the relevant theories, the technology of single photon detection based on the coplanar waveguide resonator has obtained a breakthrough. In this review paper we begin from the basic principle of the coplanar waveguide detector, then interpret the relevant theory and some design details of the devices. Finally, based on some of the recent experimental results measured with the low-temperature devices in our lab, we give a brief perspective on the future development of the superconducting coplanar waveguide single photon detectors.
    • 基金项目: 国家重点基础研究计划项目(批准号:2010CB923104)、国家自然科学基金(批准号:91321104,61301031,11174373)和国家高技术研究发展计划(批准号:2010CB923104)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB923104), the National Natural Science Foundation of China (Grant Nos. 91321104, 61301031, 11174373), and the National High Technology Research and Development Program of China (Grant No. 2010CB923104).
    [1]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169

    [2]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [3]

    Zhao N, Liu J S, Li T F, Chen W 2013, Acta Phys. Sin. 62 010301 (in Chinese) [赵娜, 刘建设, 李铁夫, 陈炜2013 62 010301]

    [4]

    Day P K, Leduc H G, Mazin B A, Vayonakis A, Zmuidzinas J 2003 Nature 425 817

    [5]

    Hiskett P A, Rosenberg D, Peterson C G, Hughes R J, Nam S, Lita A E, Miller A J, Nordholt J E 2006 New J. Phys. 8 193

    [6]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [7]

    Wang H P, Wang G L, Ni H Q, Xu Y Q, Niu Z C, Gao F Q 2013 Acta Phys. Sin. 62 194205 (in Chinese)[王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐2013 62 194205]

    [8]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红2012 61 248502]

    [9]

    Sun Z B, Ma H Q, Lei B, Yang H D, Wu L A, Zhai G J, Feng J 2007 Acta Phys. Sin. 56 5790 (in Chinese)[孙志斌, 马海强, 雷鸣, 杨捍东, 吴令安, 翟光杰, 冯稷2007 56 5790]

    [10]

    Watanabe K, Yoshida K, Aoki T Kohjiro S 1994 Jpn. J. Appl. Phys. 33 5708

    [11]

    Baselmans J, Barends R, Hovenier J N, Gao J R, Hoevers H, Korte P, Klapwijk T M 2005 Bulletin de la Societe Royale des Sciences de Liege 74 5

    [12]

    Mattis D C, Bardeen J 1958 Phys. Rev. 11 2

    [13]

    Gao J S, Daal M, Vayonakis A, Kumar S, Zmuidzinas J, Sadoulet B, Mazin B A, Day P K, Leduc H G 2008 Appl. Phys. Lett. 92 152505

    [14]

    Gao J, Vissers M R, Sandberg M O, Silva F C S, Nam S W, Pappas D P, Wisbey D S, Langman E C, Meeker S R, Mazin B A, Leduc H G, Zmuidzinas J, Irwin K D 2012 Appl. Phys. Lett. 101 142602

    [15]

    Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta. Phys. Sin. 60 038501 (in Chinese) [张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨2011 60 038501]

    [16]

    Zhou Y, Zhang L B, Jia T, Zhao Q Y, Gu M, Qiu J, Kang L, Chen J, Wu P H 2012 Acta. Phys. Sin. 61 208501 (in Chinese)[周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨2012 61 208501]

    [17]

    Tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705

    [18]

    Lita A E, Miller A J, Nam S W 2008 Opt. Express 16 3032

    [19]

    Fujii G, Fukuda D, Numata T, Yoshizawa A, Tsuchida H, Inoue S 2012 J. Low. Temp. Phys. 10 1007

    [20]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambrige: Cambrige University Press)

    [21]

    Sadleir J E, Smith S J, Robinson I K, Finkbeiner F M, Chervenak J A, Bandler S R, Eckart M E, Kilbourne C A 2011 Phys. Rev. B 84 184502

    [22]

    Friedrich S, Funk T, Drury O, Labov S E, Cramer S P 2002 Rev. Sci. Inst. 73 1629

    [23]

    Irwin K D, Hilton G C 2005 Chr. Enss (2 Ed.): Cryogenic Particle Detection, Topics Appl. Phys. 99 63

    [24]

    Martin D D E, Verhoeve P 2010 Superconducting tunnel junctions

    [25]

    Natarajan C M, Tanner M G, Hadfield R H 2012 Superconductor Science and Technology 25 063001

    [26]

    Mazin B A 2004 Microwave Kinetic Inductance Detectors (California: California Institute of Thechnology)

    [27]

    Calvo M 2008 Development of Kinetic Inductance Detectors for the study of the Cosmic Microwave Background Polarization (Roma: Sapienza University)

    [28]

    Chambers R G 1952 Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 215 481

    [29]

    London F 1936 Nature 137 991

    [30]

    Pippard A B 1953 Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 216 547

    [31]

    Mattis D C, Bardeen J 1958 Phys. Rev. 111 412

    [32]

    Glover R E, Tinkham M 1957 Physical Review 108 243

    [33]

    Zmuidzinas J 2012 Annu. Rev. Condens.Matter Phys. 3 169

    [34]

    Gao J, Zmuidzinas J, Mazin B A, Leduc H G, Day P K 2007 Appl. Phys. Lett. 90 102507

    [35]

    Gao J, Daal M, Martinis J M, Vayonakis A, Zmuidzinas J, Sadoulet B, Mazin B A, Day P K, Leduc H G 2008 Appl. Phys. Lett. 92 212504

    [36]

    Anderson P W, Halperin B I, Varma C M 1972 Philos. Mag. 25 1

    [37]

    Phillips W A 1972 J. Low Temp. Phys. 7 351

    [38]

    Li J S, Yin M, Wang J X, He D Y 2005 Chinese Physics Letters 22 3130

    [39]

    Gao J S 2008 The Physics of Superconducting Microwave Resonators (Califonia: California Institute of Technology)

    [40]

    Kumar S, Day P, LeDuc H, Mazin B, Eckart M, Gao J, Zmuidzinas J 2006 Santa Barbara: APS March Meeting Abstract B38 2

    [41]

    Barends R, Baselmans J J A, Hovenier J N, Gao J R, Yates S J C, Klapwijk T M, Hoevers H F C 2007 IEEE Trans. Appl. Supercond. 17 263

    [42]

    Pozar D M 1998 Microwave Engineering, 2nd New York

    [43]

    Doyle S, Mauskopf P, Zhang J, Withington S, Goldie D, Glowacka D, Roesch M 2009 In AIP Conference Proceedings 1185 156

    [44]

    Simons R 2001 Coplanar Waveguide Circuits, Components and Systems. Wiley-Interscience

    [45]

    Gevorgian S S 1994 Electro. Lett. 30 15

    [46]

    Sergeev A, Mitin V, Karasik B 2002 Appl. Phys. Lett. 80 817

    [47]

    Beenakker C Schnenberger C 2003 Phys. Today 5 37

    [48]

    Kozorezov A G, Volkov A F, Wigmore J K, Peacock A, Poelaert A, Hartog R den 2000 Phys. Rev. B 61 11807

    [49]

    Fano U 1947 Phys. Rev. 72 26

    [50]

    Zhang X, Zhang D L 2007 Chin. Phys. 16 2656

    [51]

    Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 Chi. Sci. Bull. 58 1

    [52]

    Ponchak G E, Papapolymerou J, Tentzeris M M 2005 IEEE Trans. Microw. Theory Techn. 53 713

    [53]

    Lindstrom T, Healey J E, Colclough M S, Muirhead C M, Tzalenchuk A Ya 2009 Phys. Rev. B 80 132501

    [54]

    Wisbey D S, Gao J, Vissers M R, Silva F C S, Kline J S, Vale L, Pappas D P 2010 J. Appl. Phys. 108 093918

    [55]

    Wang Y W, Zhou P J, Wei L F, Li H J, Zhang B H, Zhang M, Wei Q, Fang Y R, Cao C H 2013 J. Appl. Phys. 114 153109

    [56]

    De Visser P J, Withington S, Goldie D J 2010 J. Appl. Phys. 108 114504

    [57]

    Gao J, Mazin B A, Daal M, Day P, LeDuc H, Zmuidzinas J 2006 In Proc. SPIE 6275 627509

    [58]

    McHugh S, Mazin B A, Serfass B, Meeker S, O’Brien K, Duan R, Rakanti R, Werthimer D 2012 Review of Scientific Instruments 83 044702

    [59]

    Sandberg M, Vissers M R, Kline J S, Weides M, Gao J, Wisbey D S, Pappas D P 2012 Appl. Phys. Lett. 100 262605

    [60]

    Quaranta O, Cecil T W, Miceli A 2013 IEEE Trans. Appl. Supercon. 23 3

    [61]

    Vissers M R, GaoJ, Sandberg M, Duff S M, Wisbey D S, Irwin K D Pappas D P 2013 Appl. Phys. Lett. 102 232603.

    [62]

    Moore D C, Golwala S, Bumble B, Cornell B, Mazin B A, Gao J, Day P K, LeDuc H G, Zmuidzinas J 2012 J. Low, Temp. Phys. 167 329

  • [1]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169

    [2]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623

    [3]

    Zhao N, Liu J S, Li T F, Chen W 2013, Acta Phys. Sin. 62 010301 (in Chinese) [赵娜, 刘建设, 李铁夫, 陈炜2013 62 010301]

    [4]

    Day P K, Leduc H G, Mazin B A, Vayonakis A, Zmuidzinas J 2003 Nature 425 817

    [5]

    Hiskett P A, Rosenberg D, Peterson C G, Hughes R J, Nam S, Lita A E, Miller A J, Nordholt J E 2006 New J. Phys. 8 193

    [6]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [7]

    Wang H P, Wang G L, Ni H Q, Xu Y Q, Niu Z C, Gao F Q 2013 Acta Phys. Sin. 62 194205 (in Chinese)[王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐2013 62 194205]

    [8]

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502 (in Chinese) [尹伟红, 韩勤, 杨晓红2012 61 248502]

    [9]

    Sun Z B, Ma H Q, Lei B, Yang H D, Wu L A, Zhai G J, Feng J 2007 Acta Phys. Sin. 56 5790 (in Chinese)[孙志斌, 马海强, 雷鸣, 杨捍东, 吴令安, 翟光杰, 冯稷2007 56 5790]

    [10]

    Watanabe K, Yoshida K, Aoki T Kohjiro S 1994 Jpn. J. Appl. Phys. 33 5708

    [11]

    Baselmans J, Barends R, Hovenier J N, Gao J R, Hoevers H, Korte P, Klapwijk T M 2005 Bulletin de la Societe Royale des Sciences de Liege 74 5

    [12]

    Mattis D C, Bardeen J 1958 Phys. Rev. 11 2

    [13]

    Gao J S, Daal M, Vayonakis A, Kumar S, Zmuidzinas J, Sadoulet B, Mazin B A, Day P K, Leduc H G 2008 Appl. Phys. Lett. 92 152505

    [14]

    Gao J, Vissers M R, Sandberg M O, Silva F C S, Nam S W, Pappas D P, Wisbey D S, Langman E C, Meeker S R, Mazin B A, Leduc H G, Zmuidzinas J, Irwin K D 2012 Appl. Phys. Lett. 101 142602

    [15]

    Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta. Phys. Sin. 60 038501 (in Chinese) [张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨2011 60 038501]

    [16]

    Zhou Y, Zhang L B, Jia T, Zhao Q Y, Gu M, Qiu J, Kang L, Chen J, Wu P H 2012 Acta. Phys. Sin. 61 208501 (in Chinese)[周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨2012 61 208501]

    [17]

    Tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705

    [18]

    Lita A E, Miller A J, Nam S W 2008 Opt. Express 16 3032

    [19]

    Fujii G, Fukuda D, Numata T, Yoshizawa A, Tsuchida H, Inoue S 2012 J. Low. Temp. Phys. 10 1007

    [20]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambrige: Cambrige University Press)

    [21]

    Sadleir J E, Smith S J, Robinson I K, Finkbeiner F M, Chervenak J A, Bandler S R, Eckart M E, Kilbourne C A 2011 Phys. Rev. B 84 184502

    [22]

    Friedrich S, Funk T, Drury O, Labov S E, Cramer S P 2002 Rev. Sci. Inst. 73 1629

    [23]

    Irwin K D, Hilton G C 2005 Chr. Enss (2 Ed.): Cryogenic Particle Detection, Topics Appl. Phys. 99 63

    [24]

    Martin D D E, Verhoeve P 2010 Superconducting tunnel junctions

    [25]

    Natarajan C M, Tanner M G, Hadfield R H 2012 Superconductor Science and Technology 25 063001

    [26]

    Mazin B A 2004 Microwave Kinetic Inductance Detectors (California: California Institute of Thechnology)

    [27]

    Calvo M 2008 Development of Kinetic Inductance Detectors for the study of the Cosmic Microwave Background Polarization (Roma: Sapienza University)

    [28]

    Chambers R G 1952 Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 215 481

    [29]

    London F 1936 Nature 137 991

    [30]

    Pippard A B 1953 Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 216 547

    [31]

    Mattis D C, Bardeen J 1958 Phys. Rev. 111 412

    [32]

    Glover R E, Tinkham M 1957 Physical Review 108 243

    [33]

    Zmuidzinas J 2012 Annu. Rev. Condens.Matter Phys. 3 169

    [34]

    Gao J, Zmuidzinas J, Mazin B A, Leduc H G, Day P K 2007 Appl. Phys. Lett. 90 102507

    [35]

    Gao J, Daal M, Martinis J M, Vayonakis A, Zmuidzinas J, Sadoulet B, Mazin B A, Day P K, Leduc H G 2008 Appl. Phys. Lett. 92 212504

    [36]

    Anderson P W, Halperin B I, Varma C M 1972 Philos. Mag. 25 1

    [37]

    Phillips W A 1972 J. Low Temp. Phys. 7 351

    [38]

    Li J S, Yin M, Wang J X, He D Y 2005 Chinese Physics Letters 22 3130

    [39]

    Gao J S 2008 The Physics of Superconducting Microwave Resonators (Califonia: California Institute of Technology)

    [40]

    Kumar S, Day P, LeDuc H, Mazin B, Eckart M, Gao J, Zmuidzinas J 2006 Santa Barbara: APS March Meeting Abstract B38 2

    [41]

    Barends R, Baselmans J J A, Hovenier J N, Gao J R, Yates S J C, Klapwijk T M, Hoevers H F C 2007 IEEE Trans. Appl. Supercond. 17 263

    [42]

    Pozar D M 1998 Microwave Engineering, 2nd New York

    [43]

    Doyle S, Mauskopf P, Zhang J, Withington S, Goldie D, Glowacka D, Roesch M 2009 In AIP Conference Proceedings 1185 156

    [44]

    Simons R 2001 Coplanar Waveguide Circuits, Components and Systems. Wiley-Interscience

    [45]

    Gevorgian S S 1994 Electro. Lett. 30 15

    [46]

    Sergeev A, Mitin V, Karasik B 2002 Appl. Phys. Lett. 80 817

    [47]

    Beenakker C Schnenberger C 2003 Phys. Today 5 37

    [48]

    Kozorezov A G, Volkov A F, Wigmore J K, Peacock A, Poelaert A, Hartog R den 2000 Phys. Rev. B 61 11807

    [49]

    Fano U 1947 Phys. Rev. 72 26

    [50]

    Zhang X, Zhang D L 2007 Chin. Phys. 16 2656

    [51]

    Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 Chi. Sci. Bull. 58 1

    [52]

    Ponchak G E, Papapolymerou J, Tentzeris M M 2005 IEEE Trans. Microw. Theory Techn. 53 713

    [53]

    Lindstrom T, Healey J E, Colclough M S, Muirhead C M, Tzalenchuk A Ya 2009 Phys. Rev. B 80 132501

    [54]

    Wisbey D S, Gao J, Vissers M R, Silva F C S, Kline J S, Vale L, Pappas D P 2010 J. Appl. Phys. 108 093918

    [55]

    Wang Y W, Zhou P J, Wei L F, Li H J, Zhang B H, Zhang M, Wei Q, Fang Y R, Cao C H 2013 J. Appl. Phys. 114 153109

    [56]

    De Visser P J, Withington S, Goldie D J 2010 J. Appl. Phys. 108 114504

    [57]

    Gao J, Mazin B A, Daal M, Day P, LeDuc H, Zmuidzinas J 2006 In Proc. SPIE 6275 627509

    [58]

    McHugh S, Mazin B A, Serfass B, Meeker S, O’Brien K, Duan R, Rakanti R, Werthimer D 2012 Review of Scientific Instruments 83 044702

    [59]

    Sandberg M, Vissers M R, Kline J S, Weides M, Gao J, Wisbey D S, Pappas D P 2012 Appl. Phys. Lett. 100 262605

    [60]

    Quaranta O, Cecil T W, Miceli A 2013 IEEE Trans. Appl. Supercon. 23 3

    [61]

    Vissers M R, GaoJ, Sandberg M, Duff S M, Wisbey D S, Irwin K D Pappas D P 2013 Appl. Phys. Lett. 102 232603.

    [62]

    Moore D C, Golwala S, Bumble B, Cornell B, Mazin B A, Gao J, Day P K, LeDuc H G, Zmuidzinas J 2012 J. Low, Temp. Phys. 167 329

  • [1] 石中誉, 代旭城, 王浩宇, 麦展彰, 欧阳鹏辉, 王翼卓, 柴亚强, 韦联福, 刘旭明, 潘长钊, 郭伟杰, 舒诗博, 王轶文. 超导动态电感探测器的噪声谱分析.  , 2024, 73(3): 038501. doi: 10.7498/aps.73.20231504
    [2] 陈志刚, 张伟君, 张兴雨, 王钰泽, 熊佳敏, 洪逸裕, 原蒲升, 吴玲, 王镇, 尤立星. 基于运算放大器的超导纳米线单光子探测器低温直流耦合读出电路.  , 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [3] 郗玲玲, 杨晓燕, 张天柱, 肖游, 尤立星, 李浩. 高综合性能超导纳米线单光子探测器.  , 2023, 72(11): 118501. doi: 10.7498/aps.72.20230326
    [4] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制.  , 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [5] 高海燕, 杨欣达, 周波, 贺青, 韦联福. 耦合诱导的四分之一波长超导谐振器微波传输透明.  , 2022, 71(6): 064202. doi: 10.7498/aps.71.20211758
    [6] 吴曼瑾, 姚柏志, 石粒力, 陈本纹, 吴敬波, 张彩虹, 金飚兵, 陈健, 吴培亨. 用于超导太赫兹探测器的低温标准黑体辐射源.  , 2022, 71(16): 168702. doi: 10.7498/aps.71.20220103
    [7] 张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨. 超导纳米线单光子探测器光子响应机制研究进展.  , 2021, 70(19): 198501. doi: 10.7498/aps.70.20210652
    [8] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理.  , 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [9] 张博, 贺青, 杨欣达, 欧阳鹏辉, 王轶文, 韦联福. 共面波导型超导微波功分器: 设计、制备和测试.  , 2021, 70(15): 158501. doi: 10.7498/aps.70.20210168
    [10] 李志全, 白兰迪, 顾而丹, 谢锐杰, 刘同磊, 牛力勇, 冯丹丹, 岳中. 一种基于金刚石多层波导结构微环谐振器的仿真分析.  , 2017, 66(20): 204203. doi: 10.7498/aps.66.204203
    [11] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜. 超导转变边沿单光子探测器原理与研究进展.  , 2014, 63(20): 200303. doi: 10.7498/aps.63.200303
    [12] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度.  , 2013, 62(19): 194204. doi: 10.7498/aps.62.194204
    [13] 王杨婧, 谢拥军, 雷振亚. 用于射频超导量子干涉器的新型单CSRR磁通聚焦器和谐振器.  , 2012, 61(9): 094210. doi: 10.7498/aps.61.094210
    [14] 张树林, 刘扬波, 曾佳, 王永良, 孔祥燕, 谢晓明. 基于低温超导量子干涉器件的脑听觉激励磁场探测.  , 2012, 61(2): 020701. doi: 10.7498/aps.61.020701
    [15] 李春早, 刘少斌, 孔祥鲲, 卞博锐, 张学勇. 外磁场与温度对低温超导光子晶体低频禁带特性的影响.  , 2012, 61(7): 075203. doi: 10.7498/aps.61.075203
    [16] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器.  , 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [17] 王甲富, 屈绍波, 徐卓, 夏颂, 张介秋, 马华, 杨一鸣, 吴翔. 电谐振器和磁谐振器构成的左手材料的实验验证.  , 2010, 59(3): 1847-1850. doi: 10.7498/aps.59.1847
    [18] 高吉, 杨涛, 马平, 戴远东. 用于高温射频超导量子干涉器的介质谐振器的性质研究.  , 2010, 59(7): 5044-5048. doi: 10.7498/aps.59.5044
    [19] 李宏成, 王瑞兰, 魏斌. 介质谐振器法测量高温超导薄膜微波表面电阻的误差分析.  , 2001, 50(5): 938-941. doi: 10.7498/aps.50.938
    [20] 王德宁, 陈红, 王渭源. 多层衬底、高Tc超导薄膜热敏红外探测器的热导研究.  , 1992, 41(10): 1679-1985. doi: 10.7498/aps.41.1679
计量
  • 文章访问数:  7225
  • PDF下载量:  9736
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-08
  • 修回日期:  2013-12-19
  • 刊出日期:  2014-04-05

/

返回文章
返回
Baidu
map