-
介质谐振器是目前高温射频超导量子干涉器较常采用的一种高品质因数微波谐振器.它是由10 mm×10 mm×1 mm的SrTiO3(STO)标准衬底及覆盖在其上的YBa2Cu3O7-δ(YBCO)薄膜磁通聚焦器共同构成的.为探明磁通聚焦器构形对介质谐振器谐振频率的影响,本文采用Ansoft公司出品的HFSS高频结构仿真软件对磁通聚焦器构形不同的若干介质谐振器的谐振特性进行了仿真.结果表明:增大磁通聚焦器开
-
关键词:
- 介质谐振器 /
- 高温射频超导量子干涉器 /
- HFSS 软件
At present, the high-transition-temperature radio frequency superconducting quantum interference device (High- T c RF SQUID) is usually coupled to a dielectric resonator which is a standard 10 mm×10 mm× 1 mm SrTiO3 (STO) substrate with a YBa2Cu3O7-δ (YBCO) thin-film flux focuser deposited on it. The dielectric resonator for the High- Tc RF SQUID has a high quality factor and a resonant frequency in the microwave range. In order to find out the effect of the flux focuser’s geometry on the dielectric resonator’s resonant frequency, we used ANSOFT high frequency structure simulator (ANSOFT HFSS) to simulate the resonance characteristics of some dielectric resonators with different flux focuser geometries. Our simulation results show that when the width of the flux focuser’s slit increases or the radius of the flux focuser’s inner hole decreases, the dielectric resonator’s resonant frequency increases. To estimate the reliability of our simulation results, we selectively prepared a few dielectric resonators and measured their resonance characteristics. The experimental results are virtually consistent with the simulation results. Our study shows that changing the flux focuser geometry is an effective way to adjust the dielectric resonator’s resonant frequency.-
Keywords:
- dielectric resonator /
- high-transition-temperature radio frequency superconducting quantum interference device /
- high frequency structure simulator
[1] Cohen D, Edelsack E A, Zimmerman J E 1970 Appl. Phys. Lett. 16 278
[2] Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
[3] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908
[4] Zimmerman J E, Beall J A, Cromar M W, Ono R H 1987 Appl. Phys. Lett. 51 617
[5] Daly K P, Dozier W D, Burch J F, Coons S B, Hu R, Platt C E, Simon R W 1991 Appl. Phys. Lett. 58 543
[6] Zhang Y, Mück H M, Herrmann K, Schubert J, Zander W, Braginski A I, Heiden C 1992 Appl. Phys. Lett. 60 645
[7] Zhang Y, Mück M, Braginski A I, Toepfer H 1994 Supercond. Sci. Technol. 7 269
[8] Zhang Y, Zander W, Schubert J, Rüders F, Soltner H, Banzet M, Wolters N, Zeng X H, Braginski A I 1997 Appl. Phys. Lett. 71 704
[9] Xie F X, Yang T, Ma P, Nie R J, Liu L Y, Wang F R, Wang S Z, Wang S G, Dai Y D 2002 CN Patent CN1352469 06-05] (in Chinese) [谢飞翔、杨 涛、马 平、聂瑞娟、刘乐园、王福仁、王守证、王世光、戴远东 2002 中国专利 CN1352469 〖10] Zhang Y, Schubert J, Wolters N, Banzet M, Zander W, Krause H J 2002 Physica C 372—376 282
[10] Liu X Y, Xie F X, Meng S C, Ma P, Yang T, Nie R J, Wang S Z, Wang F R, Dai Y D 2003 Acta Phys. Sin. 52 2580 (in Chinese) [刘新元、谢飞翔、孟树超、马 平、杨 涛、聂瑞娟、王守证、王福仁、戴远东 2003 52 2580]
[11] Clarke J, Braginski A I 2004 The SQUID Handbook (Volume 1) (Weinheim: Wiley-VCH) p230
[12] Yi H R, Zhang Y, Braginski A I 1998 Appl. Phys. Lett. 73 2357
[13] Yi H R, Zhang Y, Bousack H, Braginski A I 1999 IEEE Trans. Appl. Supercond. 9 4400
[14] Mao H Y, Wang F R, Meng S C, Mao B, Li Z Z, Nie R J, Liu X Y, Dai Y D 2005 Chin. J. Low Temp. Phys. 27 269 (in Chinese) [茅海炎、王福仁、孟树超、毛 博、李壮志、聂瑞娟、刘新元、戴远东 2005 低温 27 269]
[15] He D F, Itozaki H 2006 J. Appl. Phys. 99 123911
-
[1] Cohen D, Edelsack E A, Zimmerman J E 1970 Appl. Phys. Lett. 16 278
[2] Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
[3] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908
[4] Zimmerman J E, Beall J A, Cromar M W, Ono R H 1987 Appl. Phys. Lett. 51 617
[5] Daly K P, Dozier W D, Burch J F, Coons S B, Hu R, Platt C E, Simon R W 1991 Appl. Phys. Lett. 58 543
[6] Zhang Y, Mück H M, Herrmann K, Schubert J, Zander W, Braginski A I, Heiden C 1992 Appl. Phys. Lett. 60 645
[7] Zhang Y, Mück M, Braginski A I, Toepfer H 1994 Supercond. Sci. Technol. 7 269
[8] Zhang Y, Zander W, Schubert J, Rüders F, Soltner H, Banzet M, Wolters N, Zeng X H, Braginski A I 1997 Appl. Phys. Lett. 71 704
[9] Xie F X, Yang T, Ma P, Nie R J, Liu L Y, Wang F R, Wang S Z, Wang S G, Dai Y D 2002 CN Patent CN1352469 06-05] (in Chinese) [谢飞翔、杨 涛、马 平、聂瑞娟、刘乐园、王福仁、王守证、王世光、戴远东 2002 中国专利 CN1352469 〖10] Zhang Y, Schubert J, Wolters N, Banzet M, Zander W, Krause H J 2002 Physica C 372—376 282
[10] Liu X Y, Xie F X, Meng S C, Ma P, Yang T, Nie R J, Wang S Z, Wang F R, Dai Y D 2003 Acta Phys. Sin. 52 2580 (in Chinese) [刘新元、谢飞翔、孟树超、马 平、杨 涛、聂瑞娟、王守证、王福仁、戴远东 2003 52 2580]
[11] Clarke J, Braginski A I 2004 The SQUID Handbook (Volume 1) (Weinheim: Wiley-VCH) p230
[12] Yi H R, Zhang Y, Braginski A I 1998 Appl. Phys. Lett. 73 2357
[13] Yi H R, Zhang Y, Bousack H, Braginski A I 1999 IEEE Trans. Appl. Supercond. 9 4400
[14] Mao H Y, Wang F R, Meng S C, Mao B, Li Z Z, Nie R J, Liu X Y, Dai Y D 2005 Chin. J. Low Temp. Phys. 27 269 (in Chinese) [茅海炎、王福仁、孟树超、毛 博、李壮志、聂瑞娟、刘新元、戴远东 2005 低温 27 269]
[15] He D F, Itozaki H 2006 J. Appl. Phys. 99 123911
计量
- 文章访问数: 8733
- PDF下载量: 772
- 被引次数: 0