搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气闪烁对纠缠相干态量子干涉雷达影响机理

任益充 王书 饶瑞中 苗锡奎

引用本文:
Citation:

大气闪烁对纠缠相干态量子干涉雷达影响机理

任益充, 王书, 饶瑞中, 苗锡奎

Influence of atmospheric scintillation on entangled coherent states quantum interferometric radar

Ren Yi-Chong, Wang Shu, Rao Rui-Zhong, Miao Xi-Kui
PDF
导出引用
  • 介绍了量子干涉雷达物理模型及其探测原理,并采用耗散-涨落通道处理量子光场在湍流大气中的传输,从经典湍流统计理论推导得到大气透射率的概率密度分布函数P(T),以此为基础系统分析了大气闪烁效应对纠缠相干态量子干涉雷达的影响机理,深入讨论了平均大气透射率、闪烁指数等大气参数对系统目标探测性能的影响.研究发现:低损耗情况下系统灵敏度及分辨率性能随闪烁指数的增加而降低;高损耗情况下大气闪烁则能显著提高系统灵敏度和分辨率性能,且界定高低损耗的透射率临界点随脉冲光子数增加而增加,故大气闪烁能够在一定程度上克服大气损耗造成的不良影响.
    Much interest has been aroused in quantum metrology such as quantum interferometric radar, due to its application in sub-Raleigh ranging and remote sensing. Generally, the quantum signal emitted by quantum radar will be affected by atmosphere medium. For instance, both atmospheric loss and atmospheric scintillation seriously affect the sensitivity and resolution of quantum radar. In fact, the effects of atmospheric loss on the sensitivity and resolution of quantum interferometric radar have been investigated thoroughly and completely in the past decades. However, the investigation about the influence of atmospheric scintillation is lacking until now. To realize practical quantum interferometric radar, the perturbation coming from turbulent atmosphere must be considered, thus it is necessary to investigate how the atmospheric scintillation affects the performance of quantum radar.In this paper, the influence of intensity fluctuation which is caused by atmospheric scintillation on the performance of quantum interferometric radar with entangled coherent states (ECS) is thoroughly investigated. We first introduce the physical model of quantum interferometric radar, and the dynamic evolution of quantum light field in atmosphere is obtained by solving the master equation of dissipation channel. Considering the dissipation and fluctuation caused by atmospheric scintillation, we regard the turbulent atmosphere as so-called dissipation-fluctuation channel. Moreover, according to classical statistical theory of turbulence, we derive the explicit expression of probability distribution of transmission coefficient P(T), this probability distribution of transmission cofficient, which is determined by average transmission coefficient TD and scintillation index βD2 plays a crucial role in the studying of atmospheric scintillation.The results of investigation show that atmospheric scintillation leads to the degradation of the sensitivity and resolution of ECS quantum interferometric radar at lower atmospheric loss. Under the higher lossy condition of atmosphere, atmospheric scintillation can greatly enhance the performance of quantum interferometric radar. Furthermore, the critical atmospheric transmission coefficient which determines the lower and higher loss of atmosphere keeps increasing with the increase of average photon number per pulse. Increasing the atmospheric scintillation, rather than introducing noise and degrading the performance of quantum radar, can improve the sensitivity and resolution.This anomalous phenomenon can be explained only by quantum decoherence theory. As is well known, the supersensitivity and super-resolution of quantum radar are based on the nonlocal characteristic of quantum light field, while the dissipation process will induce decoherence that leads to the loss of nonlocal characteristic, and finally degrades the performance of quantum radar. However, there have been several researches indicating that the dissipation-fluctuation channel can alleviate the decoherence effect and maintain the nonlocal characteristic of quantum light field compared with pure dissipation channel. For the evolution of quantum light field in dissipation medium, the loss of amplitude plays a crucial role at a lower loss, while the decoherence will play a dominant role at a higher loss. Consequently, the fluctuation may induce extra noise and degrade the performance of quantum radar at lower loss. For higher loss, the fluctuation can prevent the decoherence process and maintain the quantum characteristic of light field, thus the atmospheric scintillation finally improves the sensitivity and resolution of quantum radar.
      通信作者: 任益充, rych@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11574295)和光电对抗测试评估技术重点实验室开放课题(批准号:GKCP2016002)资助的课题.
      Corresponding author: Ren Yi-Chong, rych@aiofm.ac.cn
    • Funds: Project supported by the National Science Foundation of China (Grant No. 11574295) and the Key Laboratory of Electro-Optical Countermeasures Test and Evaluation Technology, China (Grant No. GKCP2016002).
    [1]

    Xiao H T, Liu K, Fan H Q 2014 J. Nat. Univ. Def. Technol. 36 140 (in Chinese) [肖怀铁, 刘康, 范红旗 2014 国防科技大学学报 36 140]

    [2]

    Jiang T, Sun J 2014 J. CAEIT 9 10 (in Chinese) [江涛, 孙俊 2014 中国电子科学研究院学报 9 10]

    [3]

    Xu S L, Hu Y H, Zhao N X, Wang Y Y, Li L, Guo L R 2015 Acta Phys. Sin. 64 154203 (in Chinese) [徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁 2015 64 154203]

    [4]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [5]

    Gao Y, Anisimov P M, Wildfeuer C F, Luine J, Lee H, Dowling J P 2010 J. Opt. Soc. Am. B 27 170

    [6]

    Lanzagorta M 2010 Proc. SPIE 7727 77270K

    [7]

    Bakut P A 1967 Radio. Eng. Electron. Phys. 12 1

    [8]

    Jehle R E, Hudson D F 1992 U.S. Patent 5 095 312 [1992-3-10]

    [9]

    Kumar P, Grigoryan V, Vasilyev M 2007 Noise-free Amplification: towards Quantum Laser Radar (Snowmass: 14th Coherent Laser Radar Conference) p9

    [10]

    Wasilousky P A, Smith K H, Glasser R, Burdge G L, Burberry L, Deibner B, Silver M, Peach R C, Visone C, Kumer P, Lim O, Alon G, Chen C H, Bhagwat A R, Manurkar P, Vasilyev M, Annamalai M, Stelmakh N, Dutton Z, Guha S, Chen J, Silva M, Kelly W, Shapiro J F, Nair R, Yen B J, Wong F N C 2011 Proc. SPIE 8163 816305

    [11]

    Wang S, Ren Y C, Rao R Z, Miao X K 2017 Acta Phys. Sin. 66 150301 (in Chinese) [王书, 任益充, 饶瑞中, 苗锡奎 2017 66 150301]

    [12]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [13]

    Liu S, Jing J 2017 Opt. Express 25 15854

    [14]

    Fang Y, Jing J 2015 New J. Phys. 17 023027

    [15]

    Fang Y, Feng J, Cao L, et al. 2016 Appl. Phys. Lett. 108 131106

    [16]

    Breuer H P, Francesco P 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp161-162

    [17]

    Carmichael H J 2003 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Berlin: Springer Science and Business Media) p9

    [18]

    Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) p91 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论(上海: 上海交通大学出版社) 第91页]

    [19]

    Tatarskii V I 1971 Jerusalem: Israel Program for Scientific Translations 1971

    [20]

    Fante R L 1975 Proc. IEEE 63 1669

    [21]

    Fante R L 1980 Proc. IEEE 68 1424

    [22]

    Semenov A A, Vogel W 2009 Phys. Rev. A 80 201802

    [23]

    Vasylyev D Y, Semenov A A, Vogel W 2012 Phys. Rev. Lett. 108 220501

    [24]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Beijing Science Press) pp433-442 (in Chinese)[饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第433–442页]

    [25]

    Rao R Z 2005 The Propagation of Light in the Turbulent Atmosphere (Hefei: Anhui Science Press) pp180-183 (in Chinese) [饶瑞中 2005 光在湍流大气中的传播 (合肥: 安徽科学技术出版社) 第180–183页]

  • [1]

    Xiao H T, Liu K, Fan H Q 2014 J. Nat. Univ. Def. Technol. 36 140 (in Chinese) [肖怀铁, 刘康, 范红旗 2014 国防科技大学学报 36 140]

    [2]

    Jiang T, Sun J 2014 J. CAEIT 9 10 (in Chinese) [江涛, 孙俊 2014 中国电子科学研究院学报 9 10]

    [3]

    Xu S L, Hu Y H, Zhao N X, Wang Y Y, Li L, Guo L R 2015 Acta Phys. Sin. 64 154203 (in Chinese) [徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁 2015 64 154203]

    [4]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [5]

    Gao Y, Anisimov P M, Wildfeuer C F, Luine J, Lee H, Dowling J P 2010 J. Opt. Soc. Am. B 27 170

    [6]

    Lanzagorta M 2010 Proc. SPIE 7727 77270K

    [7]

    Bakut P A 1967 Radio. Eng. Electron. Phys. 12 1

    [8]

    Jehle R E, Hudson D F 1992 U.S. Patent 5 095 312 [1992-3-10]

    [9]

    Kumar P, Grigoryan V, Vasilyev M 2007 Noise-free Amplification: towards Quantum Laser Radar (Snowmass: 14th Coherent Laser Radar Conference) p9

    [10]

    Wasilousky P A, Smith K H, Glasser R, Burdge G L, Burberry L, Deibner B, Silver M, Peach R C, Visone C, Kumer P, Lim O, Alon G, Chen C H, Bhagwat A R, Manurkar P, Vasilyev M, Annamalai M, Stelmakh N, Dutton Z, Guha S, Chen J, Silva M, Kelly W, Shapiro J F, Nair R, Yen B J, Wong F N C 2011 Proc. SPIE 8163 816305

    [11]

    Wang S, Ren Y C, Rao R Z, Miao X K 2017 Acta Phys. Sin. 66 150301 (in Chinese) [王书, 任益充, 饶瑞中, 苗锡奎 2017 66 150301]

    [12]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [13]

    Liu S, Jing J 2017 Opt. Express 25 15854

    [14]

    Fang Y, Jing J 2015 New J. Phys. 17 023027

    [15]

    Fang Y, Feng J, Cao L, et al. 2016 Appl. Phys. Lett. 108 131106

    [16]

    Breuer H P, Francesco P 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp161-162

    [17]

    Carmichael H J 2003 Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Berlin: Springer Science and Business Media) p9

    [18]

    Fan H Y, Hu L Y 2010 The Thermal Entanglement Entangled-State Representation of Open Quantum System (Shanghai: Shanghai Jiao Tong University Press) p91 (in Chinese) [范洪义, 胡利云 2010 开放量子系统退相干的纠缠态表象论(上海: 上海交通大学出版社) 第91页]

    [19]

    Tatarskii V I 1971 Jerusalem: Israel Program for Scientific Translations 1971

    [20]

    Fante R L 1975 Proc. IEEE 63 1669

    [21]

    Fante R L 1980 Proc. IEEE 68 1424

    [22]

    Semenov A A, Vogel W 2009 Phys. Rev. A 80 201802

    [23]

    Vasylyev D Y, Semenov A A, Vogel W 2012 Phys. Rev. Lett. 108 220501

    [24]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Beijing Science Press) pp433-442 (in Chinese)[饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第433–442页]

    [25]

    Rao R Z 2005 The Propagation of Light in the Turbulent Atmosphere (Hefei: Anhui Science Press) pp180-183 (in Chinese) [饶瑞中 2005 光在湍流大气中的传播 (合肥: 安徽科学技术出版社) 第180–183页]

  • [1] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验.  , 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [2] 陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中. 基于纠缠相干态的量子照明雷达.  , 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [3] 田聪, 鹿翔, 张英杰, 夏云杰. 纠缠相干光场对量子态最大演化速率的操控.  , 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [4] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响.  , 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [5] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪.  , 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [6] 王书, 任益充, 饶瑞中, 苗锡奎. 大气损耗对量子干涉雷达的影响机理.  , 2017, 66(15): 150301. doi: 10.7498/aps.66.150301
    [7] 李志彬, 马宏亮, 曹振松, 孙明国, 黄印博, 朱文越, 刘强. 2μm波段高灵敏度离轴积分腔装置实际大气CO2测量.  , 2016, 65(5): 053301. doi: 10.7498/aps.65.053301
    [8] 任宝藏, 邓富国. 光子两自由度超并行量子计算与超纠缠态操控.  , 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [9] 钱仙妹, 朱文越, 饶瑞中. 伪部分相干高斯-谢尔模型光束在湍流大气中传播的闪烁孔径平滑效应.  , 2013, 62(4): 044203. doi: 10.7498/aps.62.044203
    [10] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器.  , 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [11] 罗成立, 沈利托, 刘文武. 宏观场与环境作用过程中的纠缠突然死亡与突然产生.  , 2013, 62(19): 190301. doi: 10.7498/aps.62.190301
    [12] 逯丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究.  , 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [13] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪.  , 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [14] 张晓燕, 王继锁. 相空间中对称的纠缠相干态及其非经典特性.  , 2011, 60(9): 090304. doi: 10.7498/aps.60.090304
    [15] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析.  , 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [16] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射.  , 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [17] 杨 健, 任 珉, 於亚飞, 张智明, 刘颂豪. 利用交叉克尔非线性效应实现纠缠转移.  , 2008, 57(2): 887-891. doi: 10.7498/aps.57.887
    [18] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态.  , 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [19] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干.  , 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [20] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度.  , 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
计量
  • 文章访问数:  6613
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-08
  • 修回日期:  2018-04-22
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map