搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种考虑电磁波驱动效应的等离子碰撞频率分段计算方法

刘智惟 包为民 李小平 刘东林

引用本文:
Citation:

一种考虑电磁波驱动效应的等离子碰撞频率分段计算方法

刘智惟, 包为民, 李小平, 刘东林

A segmentation calculation method for plasma collision frequency considering the electro-magnetic wave driving effect

Liu Zhi-Wei, Bao Wei-Min, Li Xiao-Ping, Liu Dong-Lin
PDF
导出引用
  • 针对高速飞行器等离子鞘套碰撞频率的经验公式忽略电子-带电粒子碰撞以及电磁波对粒子碰撞的驱动效应对碰撞频率计算的影响问题, 提出了一种考虑电磁波驱动效应的碰撞频率分段计算方法. 该算法以等离子动力论为基础, 综合考虑了电子-中性粒子碰撞、电子-带电粒子碰撞以及电磁波驱动效应对碰撞频率计算的影响, 定义了一种新参数——电离热运动比来判断两类碰撞对碰撞频率计算的影响程度, 并根据这一参数值的大小分段计算碰撞频率. 理论分析和仿真结果表明: 所提出的算法在电离热运动比大于5时比经验公式更接近碰撞频率的真实情况, 有助于高速飞行器等离子鞘套碰撞频率的计算和诊断以及电波传播特性的计算.
    An empirical formula of collision frequency has been used for years to calculate the collision frequency of aircraft plasma sheath. But the formula ignores the influences of electron-electron impact, electron-ion impact, and electro-magnetic (EM) wave driving effect on the collision frequency. To remedy these deficiencies, this paper proposes a segmentation calculation method. Based on the plasma kinetic theory, combined with real flow conditions and synthesizing the influences of electron-electron impact, electron-ion impact and EM wave driving effect together, this method defines a new parameter, ionization-to-thermal motion ratio, to calculate the collision frequency segmentally. Theoretical analysis and simulation results demonstrate that this method is closer to the truth than the empirical formula when ITR is greater than 5.
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB340205)和国家自然科学基金(批准号:61301173)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB340205) and the National Natural Science Foundation of China (Grant No. 61301173).
    [1]

    Chang Y 2009 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [常雨2009博士学位论文(长沙: 国防科学技术大学)]

    [2]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7 879

    [3]

    Zhao H Z, Wu S J, Dong N H 1983 Chin. J. Geophys. 26 9 (in Chinese) [赵汉卓, 吴是静, 董乃涵 1983 地球 26 9]

    [4]

    Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206

    [5]

    Ma M R, Chen Y L, Wang L M, Wang C 2008 Chin. Phys. B 17 1854

    [6]

    Le J L 2005 Reentry Physics (Beijing: National Defence Industry Press) p28 (in Chinese) [乐嘉陵2005再入物理(北京: 国防工业出版社)第28页]

    [7]

    Lin T C, Sproul K 1995 26th Plasmadynamics and Lasers Conference San Diego, USA, June 19-22, 1995 AIAA 95-1942

    [8]

    Liu S B 2004 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [刘少斌2004博士学位论文(长沙: 国防科学技术大学)]

    [9]

    Potter D L 2006 37th AIAA Plasmadynamics and Lasers Conference San Francisco, USA, June 5-8, 2006 p3239

    [10]

    Russo A J 1964 Interaction of Plane Electromagnetic Waves with a Fully Ionized Plasma (Albuquerque: Sandia National Laboratories) SC-TM-64-64A

    [11]

    Murray A L 1988 Further Enhancements of the BLIMP Computer Code and User's Guide (Mountain View: Aerotherm Corporation) AFWAL-TR-88-3010

    [12]

    Abbett M J 1971 Finite Difference of the Subsonic/Supersonic Inviscid Flowfield About a Supersonic Axisymmetric Blunt Body at Zero Incidence-Analysis and User's Manual (Mountain View, CA: Aerotherm Corporation) UM-71-34

    [13]

    Zheng L, Zhao Q, Luo S G, Ma P, Liu S Z, Huang C, Xing X J, Zhang C Y, Chen X L 2012 Acta Phys. Sin. 61 155203 (in Chinese) [郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖 2012 61 155203]

    [14]

    Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201 (in Chinese) [杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 63 085201]

    [15]

    Gurevich A V (translated by Liu X M, Zhang X X) 1986 Nonlinear Phenomena in the Ionosphere (Beijing: Science Press) pp16-140 (in Chinese) [古列维奇 A V著 (刘选谋, 张训械译) 1986 电离层中的非线性现象(北京: 科学出版社)第16–140页]

    [16]

    Ginzburg V L (translated by Qian S X) 1978 The Propagation of Electronmagnetic Waves in Plasmas (Beijing: Science Press) pp65-84 (in Chinese) [金兹堡V L著(钱善瑎译) 1978电磁波在等离子体中的传播(北京: 科学出版社)第65–84页]

    [17]

    Liu X M, Song Y H, Wang Y N 2011 Chin. Phys. B 20 065205

    [18]

    Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washington: National Aeronautics and Space Adminstration) NASA-CR-2232

    [19]

    Jones W L, Cross A E 1972 Electrostatic-Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Feet Per Second (Hampton: Langley Research Center) NASA-TN-D-6617

    [20]

    Gnoffo P A, Gupta R N, Shinn J L 1989 Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium (Hampton: Langley Research Center) NASA-TP-2867

    [21]

    National Aeronautics and Space Administration 1965 Conference on Langley Research Related to Apollo Mission Hampton, USA, June 22-24, 1965 NASA-SP-101

    [22]

    Howe John T 1989 Hypervelocity Atmospheric Flight: Real Gas Flow Fields (Moffett Field: Ames Research Center) NASA-TM-101055

    [23]

    National Aeronautics and Space Administration The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems Volume I Hampton, Virginia October 13-15, 1970 NASA-SP-252

    [24]

    Shkarofsky I P 1961 Can. J. Phys. 39 1619

    [25]

    Yuan Z C, Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese) [袁忠才, 时家明 2014 63 095202]

  • [1]

    Chang Y 2009 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [常雨2009博士学位论文(长沙: 国防科学技术大学)]

    [2]

    Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7 879

    [3]

    Zhao H Z, Wu S J, Dong N H 1983 Chin. J. Geophys. 26 9 (in Chinese) [赵汉卓, 吴是静, 董乃涵 1983 地球 26 9]

    [4]

    Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206

    [5]

    Ma M R, Chen Y L, Wang L M, Wang C 2008 Chin. Phys. B 17 1854

    [6]

    Le J L 2005 Reentry Physics (Beijing: National Defence Industry Press) p28 (in Chinese) [乐嘉陵2005再入物理(北京: 国防工业出版社)第28页]

    [7]

    Lin T C, Sproul K 1995 26th Plasmadynamics and Lasers Conference San Diego, USA, June 19-22, 1995 AIAA 95-1942

    [8]

    Liu S B 2004 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [刘少斌2004博士学位论文(长沙: 国防科学技术大学)]

    [9]

    Potter D L 2006 37th AIAA Plasmadynamics and Lasers Conference San Francisco, USA, June 5-8, 2006 p3239

    [10]

    Russo A J 1964 Interaction of Plane Electromagnetic Waves with a Fully Ionized Plasma (Albuquerque: Sandia National Laboratories) SC-TM-64-64A

    [11]

    Murray A L 1988 Further Enhancements of the BLIMP Computer Code and User's Guide (Mountain View: Aerotherm Corporation) AFWAL-TR-88-3010

    [12]

    Abbett M J 1971 Finite Difference of the Subsonic/Supersonic Inviscid Flowfield About a Supersonic Axisymmetric Blunt Body at Zero Incidence-Analysis and User's Manual (Mountain View, CA: Aerotherm Corporation) UM-71-34

    [13]

    Zheng L, Zhao Q, Luo S G, Ma P, Liu S Z, Huang C, Xing X J, Zhang C Y, Chen X L 2012 Acta Phys. Sin. 61 155203 (in Chinese) [郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖 2012 61 155203]

    [14]

    Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201 (in Chinese) [杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 63 085201]

    [15]

    Gurevich A V (translated by Liu X M, Zhang X X) 1986 Nonlinear Phenomena in the Ionosphere (Beijing: Science Press) pp16-140 (in Chinese) [古列维奇 A V著 (刘选谋, 张训械译) 1986 电离层中的非线性现象(北京: 科学出版社)第16–140页]

    [16]

    Ginzburg V L (translated by Qian S X) 1978 The Propagation of Electronmagnetic Waves in Plasmas (Beijing: Science Press) pp65-84 (in Chinese) [金兹堡V L著(钱善瑎译) 1978电磁波在等离子体中的传播(北京: 科学出版社)第65–84页]

    [17]

    Liu X M, Song Y H, Wang Y N 2011 Chin. Phys. B 20 065205

    [18]

    Dunn M G, Kang S W 1973 Theoretical and Experimental Studies of Reentry Plasmas (Washington: National Aeronautics and Space Adminstration) NASA-CR-2232

    [19]

    Jones W L, Cross A E 1972 Electrostatic-Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Feet Per Second (Hampton: Langley Research Center) NASA-TN-D-6617

    [20]

    Gnoffo P A, Gupta R N, Shinn J L 1989 Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium (Hampton: Langley Research Center) NASA-TP-2867

    [21]

    National Aeronautics and Space Administration 1965 Conference on Langley Research Related to Apollo Mission Hampton, USA, June 22-24, 1965 NASA-SP-101

    [22]

    Howe John T 1989 Hypervelocity Atmospheric Flight: Real Gas Flow Fields (Moffett Field: Ames Research Center) NASA-TM-101055

    [23]

    National Aeronautics and Space Administration The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems Volume I Hampton, Virginia October 13-15, 1970 NASA-SP-252

    [24]

    Shkarofsky I P 1961 Can. J. Phys. 39 1619

    [25]

    Yuan Z C, Shi J M 2014 Acta Phys. Sin. 63 095202 (in Chinese) [袁忠才, 时家明 2014 63 095202]

  • [1] 徐子原, 周辉, 刘光翰, 高中亮, 丁丽, 雷凡. 三维行波磁场对等离子体鞘套密度的调控作用.  , 2024, 73(17): 175201. doi: 10.7498/aps.73.20240877
    [2] 夏金戈, 李伟峰, 方基宇, 牛中明. 原子核β衰变寿命经验公式.  , 2024, 73(6): 062301. doi: 10.7498/aps.73.20231653
    [3] 张天成, 成爱强, 包华广, 丁大志. 静态强磁场对临近空间飞行器中天线辐射性能的影响.  , 2022, 71(8): 085202. doi: 10.7498/aps.71.20212044
    [4] 杨敏, 王佳明, 齐凯旋, 李小平, 谢楷, 张琼杰, 刘浩岩, 董鹏. 等离子体鞘套宽带微波反射诊断方法.  , 2022, 71(23): 235201. doi: 10.7498/aps.71.20221179
    [5] 邹秀, 刘惠平, 张小楠, 邱明辉. 具有非广延分布电子的碰撞等离子体磁鞘的结构.  , 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [6] 吕春静, 韩一平. 湍流等离子体鞘套中高斯光束的传播特性分析.  , 2019, 68(9): 094201. doi: 10.7498/aps.68.20182169
    [7] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性.  , 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [8] 郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林. 中低纬度电离层偶发E层电波传播建模.  , 2017, 66(11): 119401. doi: 10.7498/aps.66.119401
    [9] 魏乔菲, 尹成友, 范启蒙. 存在障碍物时电波传播抛物线方程分析及其验证.  , 2017, 66(12): 124102. doi: 10.7498/aps.66.124102
    [10] 薄勇, 赵青, 罗先刚, 刘颖, 陈禹旭, 刘建卫. 电磁波在非均匀磁化的等离子体鞘套中传输特性研究.  , 2016, 65(3): 035201. doi: 10.7498/aps.65.035201
    [11] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 碰撞参数对磁化电负性等离子体鞘层结构的影响.  , 2016, 65(24): 245201. doi: 10.7498/aps.65.245201
    [12] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜. 基于可调谐半导体激光吸收光谱技术的气体浓度测量温度影响修正方法研究.  , 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [13] 张青洪, 廖成, 盛楠, 陈伶璐. 森林环境电波传播抛物方程模型的改进研究.  , 2013, 62(20): 204101. doi: 10.7498/aps.62.204101
    [14] 邱明辉, 刘惠平, 邹秀. 斜磁场作用下碰撞电负性等离子体鞘层的玻姆判据.  , 2012, 61(15): 155204. doi: 10.7498/aps.61.155204
    [15] 张凤奎, 丁永杰. Hall推力器内饱和鞘层下电子与壁面碰撞频率特性.  , 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [16] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据.  , 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [17] 于达仁, 张凤奎, 李鸿, 刘辉. 霍尔推进器中振荡鞘层对电子与壁面碰撞频率的影响研究.  , 2009, 58(3): 1844-1848. doi: 10.7498/aps.58.1844
    [18] 宋法伦, 曹金祥, 王舸. 电磁波在径向非均匀球对称等离子体中的衰减.  , 2004, 53(4): 1110-1115. doi: 10.7498/aps.53.1110
    [19] 曹效文. 非晶态超导体转变温度Tc的经验公式.  , 1985, 34(5): 706-708. doi: 10.7498/aps.34.706
    [20] 高崇寿. 偶同位旋π-π共振态质量的经验公式.  , 1964, 20(7): 680-681. doi: 10.7498/aps.20.680
计量
  • 文章访问数:  6752
  • PDF下载量:  576
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-09
  • 修回日期:  2014-07-10
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map