搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

运用改进的无单元Galerkin方法分析机场道面断裂力学问题

邹诗莹 席伟成 彭妙娟 程玉民

引用本文:
Citation:

运用改进的无单元Galerkin方法分析机场道面断裂力学问题

邹诗莹, 席伟成, 彭妙娟, 程玉民

Analysis of fracture problems of airport pavement by improved element-free Galerkin method

Zou Shi-Ying, Xi Wei-Cheng, Peng Miao-Juan, Cheng Yu-Min
PDF
导出引用
  • 在改进的无单元Galerkin方法的基础上,将能反映裂纹尖端附近应力奇异性的特征项r引入改进的移动最小二乘法的基函数中,将断裂力学和改进的无单元Galerkin方法结合,研究了线弹性断裂力学的改进的无单元Galerkin方法,并对含反射裂缝的机场复合道面层状体系结构进行了数值分析.本文的理论为机场复合道面断裂力学分析提供了一种新方法.
    Using the improved element-free Galerkin (IEFG) method, in this paper we introduce the characteristic parameter r which can reflect the singular stress near the crack tip into the basic function of the improved moving least-squares (IMLS) approximation. Combining fracture theory with the IEFG method, we present an IEFG method of treating the elastic fracture problems, and analyze a numerical example of two-dimensional layered system of airport composite pavement with reflective crack. In the IEFG method, the IMLS approximation is used to form the shape function. The IMLS approximation is presented from the moving least-squares (MLS) approximation, which is the basis of the element-free Galerkin (EFG) method. Compared with the MLS approximation, the IMLS approximation uses the orthonormal basis functions to obtain the shape function, which leads to the fact that the matrices for obtaining the undetermined coefficients are diagonal. Then the IMLS approximation can obtain the solutions of the undetermined coefficients directly without the inverse matrices. The IMLS approximation can overcome the disadvantages of the MLS approximation, in which the ill-conditional or singular matrices are formed sometimes. And it can also improve the computational efficiency of the MLS approximation. Because of the advantages of the IMLS approximation, the IEFG method has greater computational efficiency than the EFG method which is based on the MLS approximation, and can obtain the solution for arbitrary node distribution, even though the EFG method cannot obtain the solution due to the ill-conditional or singular matrices in the MLS approximation. Paving the asphalt concrete layer on the cement concrete pavement is an effective approach to improving the structure and service performance of an airport pavement, which is called airport composite pavement. The airport composite pavement has the advantages of rigid pavement and flexible pavement, but there are various forms of joints or cracks of cement concrete slab, which makes the crack reflect into the asphalt overlay easily under the plane load and environmental factors. Reflective crack is one of the main failure forms of the airport composite pavement. Therefore, it is of great theoretical significance and engineering application to study the generation and development mechanism of reflective crack of the airport composite pavement. For the numerical methods of solving the fracture problems, introducing the characteristic parameter r which can reflect the singular stress near the crack tip into the basic function is a general approach. In this paper, we use this approach to obtain the IEFG method for fracture problems, and the layered system of airport composite pavement with reflective crack is considered. The numerical results of the displacements and stresses in the airport composite pavement are given. And at the tip of the crack, the stress is singular, which makes the crack of the airport composite pavement grow. This paper provides a new method for solving the reflective crack problem of airport composite pavement.
      通信作者: 程玉民, ymcheng@shu.edu.cn
    • 基金项目: 国家自然科学基金委员会-中国民航局民航联合研究基金(批准号:U1433104)资助的课题.
      Corresponding author: Cheng Yu-Min, ymcheng@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1433104).
    [1]

    Cheng Y M 2015 Meshless Methods (Beijing: Science Press) pp1-13 (in Chinese) [程玉民2015无网格方法 (北京: 科学出版社) 第1-13页]

    [2]

    Cheng Y M, Ji X, He P F 2004 Acta Mech. Sin. 36 43 (in Chinese) [程玉民, 嵇醒, 贺鹏飞 2004 力学学报 36 43]

    [3]

    Cheng Y M, Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese) [程玉民, 陈美娟 2003 力学学报 35 181]

    [4]

    Cheng Y M, Liew K M, Kitipornchai S 2009 Int. J. Numer. Meth. Eng. 78 1258

    [5]

    Cheng Y M, Peng M J, Li J H 2005 Chin. J. Theor. Appl. Mech. 37 719 (in Chinese) [程玉民, 彭妙娟, 李九红 2005 应用力学学报 37 719]

    [6]

    Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese) [程玉民, 李九红 2005 54 4463]

    [7]

    Bai F N, Li D M, Wang J F, Cheng Y M 2012 Chin. Phys. B 21 020204

    [8]

    Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese) [陈丽, 程玉民 2008 57 1]

    [9]

    Peng M J, Li R X, Cheng Y M 2014 Eng. Anal. Bound. Elem. 40 104

    [10]

    Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203

    [11]

    Sun F X, Wang J F, Cheng Y M 2013 Chin. Phys. B 22 120203

    [12]

    Cheng Y M, Bai F N, Peng M J 2014 Appl. Math. Modell. 38 5187

    [13]

    Cheng Y M, Bai F N, Liu C, Peng M J 2016 Int. J. Comput. Mater. Sci. Eng. 5 1650023

    [14]

    Sun F X, Wang J F, Cheng Y M 2016 Int. J. Appl. Mech. 8 1650096

    [15]

    Cheng Y M, Peng M J 2005 Sci. China Ser. G 48 641

    [16]

    Peng M J, Cheng Y M 2009 Eng. Anal. Bound. Elem. 33 77

    [17]

    Ren H P, Cheng Y M, Zhang W 2009 Chin. Phys. B 18 4065

    [18]

    Wang J F, Wang J F, Sun F X, Cheng Y M 2013 Int. J. Comput. Meth. 10 1350043

    [19]

    Cheng Y M, Li J H 2006 Sci. China Ser. G 49 46

    [20]

    Peng M J, Li D M, Cheng Y M 2011 Eng. Struct. 33 127

    [21]

    Li D M, Peng M J, Cheng Y M 2011 Sci. Sin.: Phys. Mech. Astron. 41 1003 (in Chinese) [李冬明, 彭妙娟, 程玉民 2011 中国科学: 物理学 力学 天文学 41 1003]

    [22]

    Cheng Y M, Li R X, Peng M J 2012 Chin. Phys. B 21 090205

    [23]

    Cheng Y M, Wang J F, Li R X 2012 Int. J. Appl. Mech. 4 1250042

    [24]

    Cheng Y M, Wang J F, Bai F N 2012 Chin. Phys. B 21 090203

    [25]

    Deng Y J, Liu C, Peng M J, Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017

    [26]

    Cheng Y M, Liu C, Bai F N, Peng M J 2015 Chin. Phys. B 24 100202

    [27]

    Chen L, Ma H P, Cheng Y M 2013 Chin. Phys. B 22 050202

    [28]

    Weng Y J, Cheng Y M 2013 Chin. Phys. B 22 090204

    [29]

    Chen L, Cheng Y M, Ma H P 2015 Comput. Mech. 55 591

    [30]

    Garzon J, Duarte C A, Buttlar W 2010 Road Mater. Pavement Design 11 459

    [31]

    Garzon J, Kim D, Duarte C A 2013 Int. J. Comput. Meth. 10 1350045

    [32]

    Li S M, Cai X M, Xu Z H 2005 J. Tongji Univ. (Nat. Sci.) 33 1616 (in Chinese) [李淑明, 蔡喜棉, 许志鸿 2005 同济大学学报(自然科学版) 33 1616]

    [33]

    Wo R H, Ling J M 2001 J. Tongji Univ. 29 288 (in Chinese) [呙润华, 凌建明 2001 同济大学学报 29 288]

    [34]

    Zhou Z F, Ling J M, Yuan J 2007 J. Traffic Transport. Eng. 7 50 (in Chinese) [周正峰, 凌建明, 袁捷 2007 交通运输工程学报 7 50]

    [35]

    Ma X, Ni F J, Chen R S 2010 J. Changan Univ. (Nat. Sci.) 30 23 (in Chinese) [马翔, 倪富健, 陈荣生2010 长安大学学报 (自然科学版) 30 23]

    [36]

    Ma X, Ni F J, Gu X Y 2010 J. Traffic Transport. Eng. 10 36 (in Chinese) [马翔, 倪富健, 顾兴宇 2010 交通运输工程学报 10 36]

  • [1]

    Cheng Y M 2015 Meshless Methods (Beijing: Science Press) pp1-13 (in Chinese) [程玉民2015无网格方法 (北京: 科学出版社) 第1-13页]

    [2]

    Cheng Y M, Ji X, He P F 2004 Acta Mech. Sin. 36 43 (in Chinese) [程玉民, 嵇醒, 贺鹏飞 2004 力学学报 36 43]

    [3]

    Cheng Y M, Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese) [程玉民, 陈美娟 2003 力学学报 35 181]

    [4]

    Cheng Y M, Liew K M, Kitipornchai S 2009 Int. J. Numer. Meth. Eng. 78 1258

    [5]

    Cheng Y M, Peng M J, Li J H 2005 Chin. J. Theor. Appl. Mech. 37 719 (in Chinese) [程玉民, 彭妙娟, 李九红 2005 应用力学学报 37 719]

    [6]

    Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese) [程玉民, 李九红 2005 54 4463]

    [7]

    Bai F N, Li D M, Wang J F, Cheng Y M 2012 Chin. Phys. B 21 020204

    [8]

    Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese) [陈丽, 程玉民 2008 57 1]

    [9]

    Peng M J, Li R X, Cheng Y M 2014 Eng. Anal. Bound. Elem. 40 104

    [10]

    Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203

    [11]

    Sun F X, Wang J F, Cheng Y M 2013 Chin. Phys. B 22 120203

    [12]

    Cheng Y M, Bai F N, Peng M J 2014 Appl. Math. Modell. 38 5187

    [13]

    Cheng Y M, Bai F N, Liu C, Peng M J 2016 Int. J. Comput. Mater. Sci. Eng. 5 1650023

    [14]

    Sun F X, Wang J F, Cheng Y M 2016 Int. J. Appl. Mech. 8 1650096

    [15]

    Cheng Y M, Peng M J 2005 Sci. China Ser. G 48 641

    [16]

    Peng M J, Cheng Y M 2009 Eng. Anal. Bound. Elem. 33 77

    [17]

    Ren H P, Cheng Y M, Zhang W 2009 Chin. Phys. B 18 4065

    [18]

    Wang J F, Wang J F, Sun F X, Cheng Y M 2013 Int. J. Comput. Meth. 10 1350043

    [19]

    Cheng Y M, Li J H 2006 Sci. China Ser. G 49 46

    [20]

    Peng M J, Li D M, Cheng Y M 2011 Eng. Struct. 33 127

    [21]

    Li D M, Peng M J, Cheng Y M 2011 Sci. Sin.: Phys. Mech. Astron. 41 1003 (in Chinese) [李冬明, 彭妙娟, 程玉民 2011 中国科学: 物理学 力学 天文学 41 1003]

    [22]

    Cheng Y M, Li R X, Peng M J 2012 Chin. Phys. B 21 090205

    [23]

    Cheng Y M, Wang J F, Li R X 2012 Int. J. Appl. Mech. 4 1250042

    [24]

    Cheng Y M, Wang J F, Bai F N 2012 Chin. Phys. B 21 090203

    [25]

    Deng Y J, Liu C, Peng M J, Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017

    [26]

    Cheng Y M, Liu C, Bai F N, Peng M J 2015 Chin. Phys. B 24 100202

    [27]

    Chen L, Ma H P, Cheng Y M 2013 Chin. Phys. B 22 050202

    [28]

    Weng Y J, Cheng Y M 2013 Chin. Phys. B 22 090204

    [29]

    Chen L, Cheng Y M, Ma H P 2015 Comput. Mech. 55 591

    [30]

    Garzon J, Duarte C A, Buttlar W 2010 Road Mater. Pavement Design 11 459

    [31]

    Garzon J, Kim D, Duarte C A 2013 Int. J. Comput. Meth. 10 1350045

    [32]

    Li S M, Cai X M, Xu Z H 2005 J. Tongji Univ. (Nat. Sci.) 33 1616 (in Chinese) [李淑明, 蔡喜棉, 许志鸿 2005 同济大学学报(自然科学版) 33 1616]

    [33]

    Wo R H, Ling J M 2001 J. Tongji Univ. 29 288 (in Chinese) [呙润华, 凌建明 2001 同济大学学报 29 288]

    [34]

    Zhou Z F, Ling J M, Yuan J 2007 J. Traffic Transport. Eng. 7 50 (in Chinese) [周正峰, 凌建明, 袁捷 2007 交通运输工程学报 7 50]

    [35]

    Ma X, Ni F J, Chen R S 2010 J. Changan Univ. (Nat. Sci.) 30 23 (in Chinese) [马翔, 倪富健, 陈荣生2010 长安大学学报 (自然科学版) 30 23]

    [36]

    Ma X, Ni F J, Gu X Y 2010 J. Traffic Transport. Eng. 10 36 (in Chinese) [马翔, 倪富健, 顾兴宇 2010 交通运输工程学报 10 36]

  • [1] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性.  , 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [2] 于晓洋, 冯红磊, 辜刚旭, 刘永河, 李治林, 徐同帅, 李永庆. 层状铁磁体Fe0.26TaS2的Andreev反射谱.  , 2019, 68(24): 247201. doi: 10.7498/aps.68.20191221
    [3] 张鹏轩, 彭妙娟. 黏弹性问题的插值型无单元Galerkin方法.  , 2019, 68(17): 170203. doi: 10.7498/aps.68.20191047
    [4] 楼国锋, 于歆杰, 卢诗华. 引入界面耦合系数的长片型磁电层状复合材料的等效电路模型.  , 2018, 67(2): 027501. doi: 10.7498/aps.67.20172080
    [5] 彭妙娟, 刘茜. 黏弹性问题的改进的复变量无单元Galerkin方法.  , 2014, 63(18): 180203. doi: 10.7498/aps.63.180203
    [6] 齐有政, 黄玲, 张建国, 方广有. 层状介质上时空展源瞬变电磁响应的计算方法研究.  , 2013, 62(23): 234201. doi: 10.7498/aps.62.234201
    [7] 汪建勋, 汪宏年, 周建美, 杨守文, 刘晓军, 殷长春. 用改进的传输线算法计算水平层状横向同性地层中海洋可控源电磁响应.  , 2013, 62(22): 224101. doi: 10.7498/aps.62.224101
    [8] 于歆杰, 吴天逸, 李臻. 基于Metglas/PFC磁电层状复合材料的电能无线传输系统.  , 2013, 62(5): 058503. doi: 10.7498/aps.62.058503
    [9] 冯昭, 王晓东, 欧阳洁. 求解Kuramoto-Sivashinsky方程的平移基无单元Galerkin方法.  , 2012, 61(23): 230204. doi: 10.7498/aps.61.230204
    [10] 王巍, 罗小彬, 杨丽洁, 张宁. 层状磁电复合材料谐振频率下的巨磁电容效应.  , 2011, 60(10): 107702. doi: 10.7498/aps.60.107702
    [11] 程荣军, 程玉民. 弹性力学的无单元Galerkin方法的误差估计.  , 2011, 60(7): 070206. doi: 10.7498/aps.60.070206
    [12] 郑保敬, 戴保东. 位势问题改进的无网格局部Petrov-Galerkin法.  , 2010, 59(8): 5182-5189. doi: 10.7498/aps.59.5182
    [13] 杨伟伟, 文玉梅, 李 平, 卞雷祥. GMM/弹性板/PZT层状复合结构的纵振磁电响应.  , 2008, 57(7): 4545-4551. doi: 10.7498/aps.57.4545
    [14] 程荣军, 程玉民. 势问题的无单元Galerkin方法的误差估计.  , 2008, 57(10): 6037-6046. doi: 10.7498/aps.57.6037
    [15] 王冠芳, 刘 彬, 傅立斌, 赵 鸿. 非线性三能级体系的绝热朗道-齐纳隧穿.  , 2007, 56(7): 3733-3738. doi: 10.7498/aps.56.3733
    [16] 万 红, 谢立强, 吴学忠, 刘希从. TbDyFe/PZT层状复合材料的磁电效应研究.  , 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [17] 张海燕, 刘镇清, 马小松. 界面层对层状各向异性复合结构中Lamb波的影响.  , 2003, 52(10): 2492-2499. doi: 10.7498/aps.52.2492
    [18] 张 锐, 万明习, CAO WEN-WU. 超薄层状复合媒质弱界面深度与声导波.  , 2000, 49(7): 1297-1302. doi: 10.7498/aps.49.1297
    [19] 林琨智. 无反射势阱中粒子运动的双波函数描述.  , 1996, 45(3): 360-369. doi: 10.7498/aps.45.360
    [20] 周光辉. 无反射势阱的Schr?dinger方程的精确解.  , 1993, 42(2): 173-179. doi: 10.7498/aps.42.173
计量
  • 文章访问数:  6176
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-26
  • 修回日期:  2017-03-26
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map