-
在改进的无单元Galerkin方法的基础上,将能反映裂纹尖端附近应力奇异性的特征项r引入改进的移动最小二乘法的基函数中,将断裂力学和改进的无单元Galerkin方法结合,研究了线弹性断裂力学的改进的无单元Galerkin方法,并对含反射裂缝的机场复合道面层状体系结构进行了数值分析.本文的理论为机场复合道面断裂力学分析提供了一种新方法.
-
关键词:
- 改进的无单元Galerkin方法 /
- 机场复合道面 /
- 层状体系 /
- 反射裂缝
Using the improved element-free Galerkin (IEFG) method, in this paper we introduce the characteristic parameter r which can reflect the singular stress near the crack tip into the basic function of the improved moving least-squares (IMLS) approximation. Combining fracture theory with the IEFG method, we present an IEFG method of treating the elastic fracture problems, and analyze a numerical example of two-dimensional layered system of airport composite pavement with reflective crack. In the IEFG method, the IMLS approximation is used to form the shape function. The IMLS approximation is presented from the moving least-squares (MLS) approximation, which is the basis of the element-free Galerkin (EFG) method. Compared with the MLS approximation, the IMLS approximation uses the orthonormal basis functions to obtain the shape function, which leads to the fact that the matrices for obtaining the undetermined coefficients are diagonal. Then the IMLS approximation can obtain the solutions of the undetermined coefficients directly without the inverse matrices. The IMLS approximation can overcome the disadvantages of the MLS approximation, in which the ill-conditional or singular matrices are formed sometimes. And it can also improve the computational efficiency of the MLS approximation. Because of the advantages of the IMLS approximation, the IEFG method has greater computational efficiency than the EFG method which is based on the MLS approximation, and can obtain the solution for arbitrary node distribution, even though the EFG method cannot obtain the solution due to the ill-conditional or singular matrices in the MLS approximation. Paving the asphalt concrete layer on the cement concrete pavement is an effective approach to improving the structure and service performance of an airport pavement, which is called airport composite pavement. The airport composite pavement has the advantages of rigid pavement and flexible pavement, but there are various forms of joints or cracks of cement concrete slab, which makes the crack reflect into the asphalt overlay easily under the plane load and environmental factors. Reflective crack is one of the main failure forms of the airport composite pavement. Therefore, it is of great theoretical significance and engineering application to study the generation and development mechanism of reflective crack of the airport composite pavement. For the numerical methods of solving the fracture problems, introducing the characteristic parameter r which can reflect the singular stress near the crack tip into the basic function is a general approach. In this paper, we use this approach to obtain the IEFG method for fracture problems, and the layered system of airport composite pavement with reflective crack is considered. The numerical results of the displacements and stresses in the airport composite pavement are given. And at the tip of the crack, the stress is singular, which makes the crack of the airport composite pavement grow. This paper provides a new method for solving the reflective crack problem of airport composite pavement.-
Keywords:
- improved element-free Galerkin method /
- airport composite pavement /
- layered system /
- reflective crack
[1] Cheng Y M 2015 Meshless Methods (Beijing: Science Press) pp1-13 (in Chinese) [程玉民2015无网格方法 (北京: 科学出版社) 第1-13页]
[2] Cheng Y M, Ji X, He P F 2004 Acta Mech. Sin. 36 43 (in Chinese) [程玉民, 嵇醒, 贺鹏飞 2004 力学学报 36 43]
[3] Cheng Y M, Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese) [程玉民, 陈美娟 2003 力学学报 35 181]
[4] Cheng Y M, Liew K M, Kitipornchai S 2009 Int. J. Numer. Meth. Eng. 78 1258
[5] Cheng Y M, Peng M J, Li J H 2005 Chin. J. Theor. Appl. Mech. 37 719 (in Chinese) [程玉民, 彭妙娟, 李九红 2005 应用力学学报 37 719]
[6] Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese) [程玉民, 李九红 2005 54 4463]
[7] Bai F N, Li D M, Wang J F, Cheng Y M 2012 Chin. Phys. B 21 020204
[8] Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese) [陈丽, 程玉民 2008 57 1]
[9] Peng M J, Li R X, Cheng Y M 2014 Eng. Anal. Bound. Elem. 40 104
[10] Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203
[11] Sun F X, Wang J F, Cheng Y M 2013 Chin. Phys. B 22 120203
[12] Cheng Y M, Bai F N, Peng M J 2014 Appl. Math. Modell. 38 5187
[13] Cheng Y M, Bai F N, Liu C, Peng M J 2016 Int. J. Comput. Mater. Sci. Eng. 5 1650023
[14] Sun F X, Wang J F, Cheng Y M 2016 Int. J. Appl. Mech. 8 1650096
[15] Cheng Y M, Peng M J 2005 Sci. China Ser. G 48 641
[16] Peng M J, Cheng Y M 2009 Eng. Anal. Bound. Elem. 33 77
[17] Ren H P, Cheng Y M, Zhang W 2009 Chin. Phys. B 18 4065
[18] Wang J F, Wang J F, Sun F X, Cheng Y M 2013 Int. J. Comput. Meth. 10 1350043
[19] Cheng Y M, Li J H 2006 Sci. China Ser. G 49 46
[20] Peng M J, Li D M, Cheng Y M 2011 Eng. Struct. 33 127
[21] Li D M, Peng M J, Cheng Y M 2011 Sci. Sin.: Phys. Mech. Astron. 41 1003 (in Chinese) [李冬明, 彭妙娟, 程玉民 2011 中国科学: 物理学 力学 天文学 41 1003]
[22] Cheng Y M, Li R X, Peng M J 2012 Chin. Phys. B 21 090205
[23] Cheng Y M, Wang J F, Li R X 2012 Int. J. Appl. Mech. 4 1250042
[24] Cheng Y M, Wang J F, Bai F N 2012 Chin. Phys. B 21 090203
[25] Deng Y J, Liu C, Peng M J, Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017
[26] Cheng Y M, Liu C, Bai F N, Peng M J 2015 Chin. Phys. B 24 100202
[27] Chen L, Ma H P, Cheng Y M 2013 Chin. Phys. B 22 050202
[28] Weng Y J, Cheng Y M 2013 Chin. Phys. B 22 090204
[29] Chen L, Cheng Y M, Ma H P 2015 Comput. Mech. 55 591
[30] Garzon J, Duarte C A, Buttlar W 2010 Road Mater. Pavement Design 11 459
[31] Garzon J, Kim D, Duarte C A 2013 Int. J. Comput. Meth. 10 1350045
[32] Li S M, Cai X M, Xu Z H 2005 J. Tongji Univ. (Nat. Sci.) 33 1616 (in Chinese) [李淑明, 蔡喜棉, 许志鸿 2005 同济大学学报(自然科学版) 33 1616]
[33] Wo R H, Ling J M 2001 J. Tongji Univ. 29 288 (in Chinese) [呙润华, 凌建明 2001 同济大学学报 29 288]
[34] Zhou Z F, Ling J M, Yuan J 2007 J. Traffic Transport. Eng. 7 50 (in Chinese) [周正峰, 凌建明, 袁捷 2007 交通运输工程学报 7 50]
[35] Ma X, Ni F J, Chen R S 2010 J. Changan Univ. (Nat. Sci.) 30 23 (in Chinese) [马翔, 倪富健, 陈荣生2010 长安大学学报 (自然科学版) 30 23]
[36] Ma X, Ni F J, Gu X Y 2010 J. Traffic Transport. Eng. 10 36 (in Chinese) [马翔, 倪富健, 顾兴宇 2010 交通运输工程学报 10 36]
-
[1] Cheng Y M 2015 Meshless Methods (Beijing: Science Press) pp1-13 (in Chinese) [程玉民2015无网格方法 (北京: 科学出版社) 第1-13页]
[2] Cheng Y M, Ji X, He P F 2004 Acta Mech. Sin. 36 43 (in Chinese) [程玉民, 嵇醒, 贺鹏飞 2004 力学学报 36 43]
[3] Cheng Y M, Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese) [程玉民, 陈美娟 2003 力学学报 35 181]
[4] Cheng Y M, Liew K M, Kitipornchai S 2009 Int. J. Numer. Meth. Eng. 78 1258
[5] Cheng Y M, Peng M J, Li J H 2005 Chin. J. Theor. Appl. Mech. 37 719 (in Chinese) [程玉民, 彭妙娟, 李九红 2005 应用力学学报 37 719]
[6] Cheng Y M, Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese) [程玉民, 李九红 2005 54 4463]
[7] Bai F N, Li D M, Wang J F, Cheng Y M 2012 Chin. Phys. B 21 020204
[8] Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese) [陈丽, 程玉民 2008 57 1]
[9] Peng M J, Li R X, Cheng Y M 2014 Eng. Anal. Bound. Elem. 40 104
[10] Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203
[11] Sun F X, Wang J F, Cheng Y M 2013 Chin. Phys. B 22 120203
[12] Cheng Y M, Bai F N, Peng M J 2014 Appl. Math. Modell. 38 5187
[13] Cheng Y M, Bai F N, Liu C, Peng M J 2016 Int. J. Comput. Mater. Sci. Eng. 5 1650023
[14] Sun F X, Wang J F, Cheng Y M 2016 Int. J. Appl. Mech. 8 1650096
[15] Cheng Y M, Peng M J 2005 Sci. China Ser. G 48 641
[16] Peng M J, Cheng Y M 2009 Eng. Anal. Bound. Elem. 33 77
[17] Ren H P, Cheng Y M, Zhang W 2009 Chin. Phys. B 18 4065
[18] Wang J F, Wang J F, Sun F X, Cheng Y M 2013 Int. J. Comput. Meth. 10 1350043
[19] Cheng Y M, Li J H 2006 Sci. China Ser. G 49 46
[20] Peng M J, Li D M, Cheng Y M 2011 Eng. Struct. 33 127
[21] Li D M, Peng M J, Cheng Y M 2011 Sci. Sin.: Phys. Mech. Astron. 41 1003 (in Chinese) [李冬明, 彭妙娟, 程玉民 2011 中国科学: 物理学 力学 天文学 41 1003]
[22] Cheng Y M, Li R X, Peng M J 2012 Chin. Phys. B 21 090205
[23] Cheng Y M, Wang J F, Li R X 2012 Int. J. Appl. Mech. 4 1250042
[24] Cheng Y M, Wang J F, Bai F N 2012 Chin. Phys. B 21 090203
[25] Deng Y J, Liu C, Peng M J, Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017
[26] Cheng Y M, Liu C, Bai F N, Peng M J 2015 Chin. Phys. B 24 100202
[27] Chen L, Ma H P, Cheng Y M 2013 Chin. Phys. B 22 050202
[28] Weng Y J, Cheng Y M 2013 Chin. Phys. B 22 090204
[29] Chen L, Cheng Y M, Ma H P 2015 Comput. Mech. 55 591
[30] Garzon J, Duarte C A, Buttlar W 2010 Road Mater. Pavement Design 11 459
[31] Garzon J, Kim D, Duarte C A 2013 Int. J. Comput. Meth. 10 1350045
[32] Li S M, Cai X M, Xu Z H 2005 J. Tongji Univ. (Nat. Sci.) 33 1616 (in Chinese) [李淑明, 蔡喜棉, 许志鸿 2005 同济大学学报(自然科学版) 33 1616]
[33] Wo R H, Ling J M 2001 J. Tongji Univ. 29 288 (in Chinese) [呙润华, 凌建明 2001 同济大学学报 29 288]
[34] Zhou Z F, Ling J M, Yuan J 2007 J. Traffic Transport. Eng. 7 50 (in Chinese) [周正峰, 凌建明, 袁捷 2007 交通运输工程学报 7 50]
[35] Ma X, Ni F J, Chen R S 2010 J. Changan Univ. (Nat. Sci.) 30 23 (in Chinese) [马翔, 倪富健, 陈荣生2010 长安大学学报 (自然科学版) 30 23]
[36] Ma X, Ni F J, Gu X Y 2010 J. Traffic Transport. Eng. 10 36 (in Chinese) [马翔, 倪富健, 顾兴宇 2010 交通运输工程学报 10 36]
计量
- 文章访问数: 6176
- PDF下载量: 187
- 被引次数: 0