搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于二维光滑粒子法的流体仿真方法

张海超 郑丹晨 边茂松 韩敏

引用本文:
Citation:

一种基于二维光滑粒子法的流体仿真方法

张海超, 郑丹晨, 边茂松, 韩敏

A fluid simulation method based on two-dimensional smoothed particle hydrodynamics

Zhang Hai-Chao, Zheng Dan-Chen, Bian Mao-Song, Han Min
PDF
导出引用
  • 针对大场景下流体仿真计算复杂度高的问题,本文以浅水方程为基础,提出一种改进的二维光滑粒子方法.该方法中使用光滑粒子法离散二维浅水方程,将水深作为粒子的属性,把计算复杂度降到二维的程度;同时为了提高邻域粒子的搜索效率,提出一种基于动态网格的邻近粒子搜索方法;并使用虚粒子和惩罚力相结合的方法处理边界条件以高效率应对复杂边界;渲染时,首先将粒子映射并插值到规则网格内得到流体表面,避免三维流体表面重构复杂度高的问题,最后利用OpenGL着色语言实现加速渲染,从而达到大场景下流体实时仿真.
    Smoothed particle hydrodynamics (SPH) method is a kind of meshless method, which is used to solve the problem of fluid simulation without complex operations of the grids. To reduce the computational complexity, SPH method based on the two-dimensional shallow water equations is employed to establish a fluid model. In large scale scenes, taking into account the high computational complexity and the serious distortion problems, in this paper we introduce an improved two-dimensional SPH algorithm according to the shallow water equations. The proposed method with two-dimensional complexity is obtained by discretizing the two-dimensional shallow water equations with SPH, and the depth of water is introduced as the particle's property. The problem of increased amount of calculation cannot be well solved by using traditional neighboring particle search method based on tree structure. To improve the efficiency of search and simplify the search operation of neighborhood particles, in this paper we introduce a point-in-box search algorithm and put forward a neighboring particles searching method on the basis of dynamic grid. Besides, for large scale scenes, by considering that the virtual particle method provides slow computation speed with complex boundary condition, the type-one virtual particles are utilized to ensure that the borders can be calculated precisely by combining the punish force to prevent the phenomenon of particle boundary penetrating. Therefore, a method is further obtained to handle boundary condition efficiently by combining the virtual particles with punish force in this paper. In the process of rendering, the fluid surface is first determined by mapping and interpolating particles into regular grids without the complex reconstruction of surface in three-dimensional. Then, we utilize the bilinear interpolation method to deal with the problem of missing values, and the surface grids are further densified. With OpenSceneGraph three-dimensional render engine, OpenGL Shading Language is adopted to speed up the rendering speed, and in this way, the real-time fluid simulation of large scale scenes can be further achieved. With the basic KD tree searching method employed in the simulations, the comparative experiments are provided to verify effectiveness of the proposed searching method based on dynamic grid. Given the data set obtained from random points, experimental results demonstrate that the method in this paper can be used to solve the problem of neighboring particles searching in large scale scenes. To show the effectiveness of the proposed method on the basis of the virtual particles and the punish force, another experiment based on the collapsing of a water column is further provided. Besides, in this paper we conduct an experiment on a certain actual reservoir terrain to prove that the proposed method can be applied to fluid simulation of large scale scenes.
      通信作者: 韩敏, minhan@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61374154)资助的课题.
      Corresponding author: Han Min, minhan@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61374154).
    [1]

    Lucy L B 1977 Astron. J. 82 1013

    [2]

    Prakash M, Rothauge K, Cleary P W 2014 Appl. Math. Model. 38 1534

    [3]

    Kipfer P, Westermann R 2006 Proceedings of Graphics Interface 2006 Quebec City, Canada, June 7-9, 2006 p41

    [4]

    Ata R, Soulaïmani A 2005 Int. J. Numer. Meth. Fl. 47 139

    [5]

    de Leffe M, Le Touzé D, Alessandrini B 2010 J. Hydraul. Res. 48 118

    [6]

    Lee H, Han S 2010 Visual Comput. 26 865

    [7]

    Solenthaler B, Bucher P, Chentanez N, Mller M, Gross M 2011 Proceedings of Workshop in Virtual Reality Interactions and Physical Simulations Lyon, France, December 5-6, 2011 p39

    [8]

    He X W, Liu N, Wang G P, Zhang F J, Li S, Shao S D, Wang H A 2012 ACM T. Graphic. 31 439

    [9]

    Cornelis J, Ihmsen M, Teschner M 2015 Comput. Graph-UK 52 72

    [10]

    He J, Chen X, Wang Z Y, Cao C, Yan H, Peng Q S 2010 Visual Comput. 26 243

    [11]

    Liu H, Qiang H F, Chen F Z, Han Y W, Fan S J 2015 Acta Phys. Sin. 64 094701 (in Chinese)[刘虎, 强洪夫, 陈福振, 韩亚伟, 范树佳2015 64 094701]

    [12]

    Han Y W, Qiang H F, Zhao J L, Gao W R 2013 Acta Phys. Sin. 62 044702 (in Chinese)[韩亚伟, 强洪夫, 赵玖玲, 高巍然2013 62 044702]

    [13]

    Hu D A, Long T, Xiao Y H, Han X, Gu Y T 2014 Comput. Method. Appl. M. 276 266

    [14]

    Xia X L, Liang Q H 2015 Environ. Modell Softw. 75 28

    [15]

    Goswami P, Schlegel P, Solenthaler B, Pajarola R 2010 Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation Madrid, Spain, July 2-4, 2010 p55

    [16]

    Yang L P, Li S, Hao A, Qin H 2012 Comput. Graph. Forum. 31 2037

    [17]

    Rodriguez-Paz M, Bonet J 2005 Comput. Struct. 83 1396

    [18]

    Liu M B, Liu G R, Lam K Y 2003 Comput. Appl. Math. 155 263

    [19]

    Ihmsen M, Orthmann J, Solenthaler B, Kolb A, Teschner M 2014 Proceedings of Eurographics 2014 State of the Art Reports Strasbourg, April 7-11, 2014 p21

  • [1]

    Lucy L B 1977 Astron. J. 82 1013

    [2]

    Prakash M, Rothauge K, Cleary P W 2014 Appl. Math. Model. 38 1534

    [3]

    Kipfer P, Westermann R 2006 Proceedings of Graphics Interface 2006 Quebec City, Canada, June 7-9, 2006 p41

    [4]

    Ata R, Soulaïmani A 2005 Int. J. Numer. Meth. Fl. 47 139

    [5]

    de Leffe M, Le Touzé D, Alessandrini B 2010 J. Hydraul. Res. 48 118

    [6]

    Lee H, Han S 2010 Visual Comput. 26 865

    [7]

    Solenthaler B, Bucher P, Chentanez N, Mller M, Gross M 2011 Proceedings of Workshop in Virtual Reality Interactions and Physical Simulations Lyon, France, December 5-6, 2011 p39

    [8]

    He X W, Liu N, Wang G P, Zhang F J, Li S, Shao S D, Wang H A 2012 ACM T. Graphic. 31 439

    [9]

    Cornelis J, Ihmsen M, Teschner M 2015 Comput. Graph-UK 52 72

    [10]

    He J, Chen X, Wang Z Y, Cao C, Yan H, Peng Q S 2010 Visual Comput. 26 243

    [11]

    Liu H, Qiang H F, Chen F Z, Han Y W, Fan S J 2015 Acta Phys. Sin. 64 094701 (in Chinese)[刘虎, 强洪夫, 陈福振, 韩亚伟, 范树佳2015 64 094701]

    [12]

    Han Y W, Qiang H F, Zhao J L, Gao W R 2013 Acta Phys. Sin. 62 044702 (in Chinese)[韩亚伟, 强洪夫, 赵玖玲, 高巍然2013 62 044702]

    [13]

    Hu D A, Long T, Xiao Y H, Han X, Gu Y T 2014 Comput. Method. Appl. M. 276 266

    [14]

    Xia X L, Liang Q H 2015 Environ. Modell Softw. 75 28

    [15]

    Goswami P, Schlegel P, Solenthaler B, Pajarola R 2010 Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation Madrid, Spain, July 2-4, 2010 p55

    [16]

    Yang L P, Li S, Hao A, Qin H 2012 Comput. Graph. Forum. 31 2037

    [17]

    Rodriguez-Paz M, Bonet J 2005 Comput. Struct. 83 1396

    [18]

    Liu M B, Liu G R, Lam K Y 2003 Comput. Appl. Math. 155 263

    [19]

    Ihmsen M, Orthmann J, Solenthaler B, Kolb A, Teschner M 2014 Proceedings of Eurographics 2014 State of the Art Reports Strasbourg, April 7-11, 2014 p21

  • [1] 许晓阳, 周亚丽, 余鹏. eXtended Pom-Pom黏弹性流体的改进光滑粒子动力学模拟.  , 2023, 72(3): 034701. doi: 10.7498/aps.72.20221922
    [2] 邵绪强, 梅鹏, 陈文新. 基于稳定性SPH-SWE数值模型的真实感流体动画实时模拟.  , 2021, 70(23): 234701. doi: 10.7498/aps.70.20211251
    [3] 李静和, 何展翔, 孟淑君, 杨俊, 李文杰, 廖小倩. 三维地形频率域井筒电磁场区域积分方程法模拟.  , 2019, 68(14): 140202. doi: 10.7498/aps.68.20190330
    [4] 高超, 袁俊杰, 曹进军, 杨荟楠, 单彦广. 纳米流体液膜蒸发自组装双尺度沉积结构三维模拟.  , 2019, 68(14): 140205. doi: 10.7498/aps.68.20190270
    [5] 崔曼, 薛惠锋, 陈福振, 卜凡彪. 道路交通的流体物理模型与粒子仿真方法.  , 2017, 66(22): 224501. doi: 10.7498/aps.66.224501
    [6] 蒋涛, 陈振超, 任金莲, 李刚. 基于修正并行光滑粒子动力学方法三维变系数瞬态热传导问题的模拟.  , 2017, 66(13): 130201. doi: 10.7498/aps.66.130201
    [7] 杨秀峰, 刘谋斌. 瑞利-泰勒不稳定问题的光滑粒子法模拟研究.  , 2017, 66(16): 164701. doi: 10.7498/aps.66.164701
    [8] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟.  , 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [9] 蒋涛, 任金莲, 徐磊, 陆林广. 非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟.  , 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [10] 胡海帆, 王颖, 陈杰, 赵士斌. 全三维电离粒子有源像素探测器优化仿真.  , 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [11] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真.  , 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [12] 罗海滨, 李俊杰, 马渊, 郭春文, 王锦程. 粗化过程中颗粒界面形状演化的三维多相场法研究.  , 2014, 63(2): 026401. doi: 10.7498/aps.63.026401
    [13] 达朝究, 冯爱霞, 龚志强, 宋健. 缓变下垫面对浅水方程的动力学订正.  , 2013, 62(3): 039202. doi: 10.7498/aps.62.039202
    [14] 明付仁, 张阿漫, 姚熊亮. 弹性壳结构静力与动力分析的光滑粒子法.  , 2013, 62(11): 110203. doi: 10.7498/aps.62.110203
    [15] 马松华, 方建平. 扩展的(2+1)维浅水波方程的尖峰孤子解及其相互作用.  , 2012, 61(18): 180505. doi: 10.7498/aps.61.180505
    [16] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究.  , 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [17] 廖臣, 刘大刚, 刘盛纲. 三维电磁粒子模拟并行计算的研究.  , 2009, 58(10): 6709-6718. doi: 10.7498/aps.58.6709
    [18] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟.  , 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [19] 陈桂波, 汪宏年, 姚敬金, 韩子夜. 各向异性海底地层海洋可控源电磁响应三维积分方程法数值模拟.  , 2009, 58(6): 3848-3857. doi: 10.7498/aps.58.3848
    [20] 沈守枫. (1+1)维广义的浅水波方程的变量分离解和孤子激发模式.  , 2006, 55(3): 1016-1022. doi: 10.7498/aps.55.1016
计量
  • 文章访问数:  6456
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2016-07-22
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map