搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

He离子辐照6H-SiC引入缺陷的光谱研究

杜洋洋 李炳生 王志光 孙建荣 姚存峰 常海龙 庞立龙 朱亚滨 崔明焕 张宏鹏 李远飞 王霁 朱卉平 宋鹏 王栋

引用本文:
Citation:

He离子辐照6H-SiC引入缺陷的光谱研究

杜洋洋, 李炳生, 王志光, 孙建荣, 姚存峰, 常海龙, 庞立龙, 朱亚滨, 崔明焕, 张宏鹏, 李远飞, 王霁, 朱卉平, 宋鹏, 王栋

Spectra study of He-irradiation induced defects in 6H-SiC

Du Yang-Yang, Li Bing-Sheng, Wang Zhi-Guang, Sun Jian-Rong, Yao Cun-Feng, Chang Hai-Long, Pang Li-Long, Zhu Ya-Bin, Cui Ming-Huan, Zhang Hong-Peng, Li Yuan-Fei, Wang Ji, Zhu Hui-Ping, Song Peng, Wang Dong
PDF
导出引用
  • 实验采用300 keV的He2+辐照6H-SiC,辐照温度分别为室温,450,600和750 ℃,辐照剂量范围为1101511017 cm-2,辐照完成后对样品进行拉曼散射和紫外可见透射光谱测试与研究. 这两种分析方法的实验结果表明,He离子辐照产生的缺陷以及缺陷的恢复与辐照剂量和辐照温度有着直接关系. 室温下辐照会使晶体出现非晶化,体现在拉曼特征峰消失,相对拉曼强度达到饱和(同时出现了较强的Si-Si峰);高温下辐照伴随着晶体缺陷的恢复过程,当氦泡未存在时,高温辐照很容易导致Frenkel对、缺陷团簇等缺陷恢复,当氦泡存在时,氦泡会抑制缺陷恢复,体现在相对拉曼强度和相对吸收系数曲线斜率的变化趋势上. 本文重点讨论了高温辐照情况下氦泡对缺陷聚集与恢复的影响,并与高温下硅离子辐照碳化硅结果进行了对比.
    Specimens of 6H-SiC were irradiated by 300keV He ions at temperatures of RT, 450, 600 and 750 ℃ with fluences ranging from 11015 to 11017 cm-2. Post-irradiation, virgin and irradiated 6H-SiC specimens are measured and studied by microscopic laser confocal Raman spectrometer and UV-visible transmission apparatus. Analyses of both experimental results shown that production and recovery of defects caused by irradiation are directly related to the fluences and temperatures. Amorphization of 6H-SiC irradiated at RT occurrs, which is reflected by the disappearance of the Raman peaks and the saturation of the relative Raman intensity(simultaneously a strong Si-Si peak appears). Recovery of defects may exist in high-temperature irradiation, when helium bubbles do not exist, so that irradiation-induced defects can be easily recovered during irradiation process at elevated temperatures; but when helium bubbles are present, they can inhibit defects to recover, as shown in the trend of slopes of curves representing the relative Raman intensity and the relative absorption coefficients. This paper mainly focuses on the effects of helium bubbles on defect accumulation and recovery under the condition of high temperature irradiation, and then the comparison with the results of 6H-SiC irradiated by Si ions at elevated temperatures.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号:2010cB832902)和国家自然科学基金 (批准号:11005130,11105190,11475229,91126011) 资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2010cB832902), and the National Natural Science Foundation of China (Grant Nos. 11005130, 11105190, 11475229, 91126011).
    [1]

    Zhang H H, Zhang C H, Li B S, Zhou L H, Yang Y T, Fu Y C 2009 Acta Phys. Sin. 58 3302 (in Chinese) [张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀 2009 58 3302]

    [2]

    Xu C L, Zhang C H, Li B S, Zhang L Q, Yang Y T, Han L H, Jia X J 2011 Nuclear Physica Review 28 209 (in Chinese) [徐超亮, 张崇宏, 李炳生, 张丽卿, 杨义涛, 韩录会, 贾秀军 2011 原子核物理评论 28 209]

    [3]
    [4]

    Xu P S, Xie C K, Pan H B, Xu F Q 2004 Chin. Phys. 13 2126

    [5]
    [6]

    Qin X F, Wang F X, Liang Y, Fu G, Zhao Y M 2010 Acta Phys. Sin. 59 6390 (in Chinese) [秦希峰, 王凤翔, 梁毅, 付刚, 赵优美 2010 59 6390]

    [7]
    [8]
    [9]

    Zhang C H, Sun Y M, Song Y 2007 Nucl Instr and Meth B 256 243

    [10]
    [11]

    Zhang Y, Zhang C H, Zhou L H 2010 Acta Phys. Sin. 59 4130 (in Chinese) [张勇, 张崇宏, 周丽宏 2010 59 4130]

    [12]
    [13]

    Edmond J A, Withrow S P, Kong H S, Davis R F 1986 Mater. Res. Soc. Proc. 51 395

    [14]
    [15]

    Heera V, Stoemenos J, Kogler R, Skorupa W 1995 J. Appl. Phys. 77 2999

    [16]

    Beaufort M F, Pailloux F, DeclemyA, Barbot J F 2003 J. Appl. Phys. 94 7116

    [17]
    [18]

    Zhang C H, Song Y, Yang Y T, Zhou C L, Wei L, Ma H J 2014 Nucl. Instrum. Methods Phys. Res. B 326 345

    [19]
    [20]
    [21]

    Dong L, Sun G S, Yu J, Zheng L, Liu X F, Zhang F, Yan G G, Li X G, Wang Zh G, Yang F 2013 Chin. Phys. Lett. 30 096105

    [22]
    [23]

    Grisola J, de Mauduit B, Gimbert J, Billon Th, Ben Assayag G, Bourgerette C, Claverie A 1999 Nucl. Instrum. Methods Phys. Res. B 147 62

    [24]

    Heera V, Stoemenos J, Kogler R, Voelskow M, Skorupa W 1999 J. Appl. Phys. 85 1378

    [25]
    [26]

    Persson P O A, Hultman L, Janson M S, Hallen A, Yakimova R, Pankin DSkorupa W 2002 J. Appl. Phys. 92 2501

    [27]
    [28]

    Zhu W, Ruan Y F, Chen J, Ma P F, Wang P F, Huang L 2012 Bulletin Of The Chinese Ceramic Society 31 386 (in Chinese) [祝威, 阮永丰, 陈敬, 马鹏飞, 王鹏飞, 黄丽 2012 硅酸盐通报 31 386]

    [29]
    [30]

    Wang C, Zhang Y M, Zhang Y M 2007 Chin. Phys. 16 1417

    [31]
    [32]
    [33]

    Cheng P, Zhang Y M, Zhang Y M, Guo H 2010 Chin. Phys. B 19 097802

    [34]

    Snead L L, Zinkle S J 1995 Mater. Res. Soc. Proc. 373 377

    [35]
    [36]
    [37]

    Zinkle S J, Snead L L 1996 Nucl. Instrum. Methods Phys. Res. B 116 92

    [38]

    Weber W J, Wang L M, Yu N, Hess N J 1998 Mater. Sci. Eng. A 253 62

    [39]
    [40]
    [41]

    Wendler E, Heft A, Wesch W 1998 Nucl. Instrum. Methods Phys. Res. B 141 105

    [42]

    Heera V, Kogler R, Skorupa W 1995 Appl. Phys. Lett. 67 1999

    [43]
    [44]

    Heft A, Wendler E, Heindl J, Bachmann T, Glaser E, Strunk H P, Wesch W 1996 Nucl. Instrum. MethodsPhys. Res. B 113 239

    [45]
    [46]

    Pacaud Y, Stoemenos J, Brauer G, Yankov R A, Heera V, Voelskow M, Kogler R, Skorupa W 1996 Nucl. Instrum. Methods Phys. Res. B 120 177

    [47]
    [48]

    Hofgen A, Heera V, Eicchorn F, Skorupa W 1998 J. Appl. Phys. 84 4769

    [49]
    [50]

    Bus T, van Veen A, Shiryaev A, Fedorov A V, Schut H, Tichelaar F D, Sietsma J 2003 Mater. Sci. Eng. B 102 269

    [51]
    [52]

    Debelle A, Backman M, Thom L, Nordlund K, Djurabekova F, Weber W J, Monnet I, Pakarinen O H, Garrido F, Paumier F 2014 Nucl. Instrum. Methods. Phys. Res. B 326 326

    [53]
    [54]
    [55]

    Helf A, Wendler E, Bachmann T, Glaser E, Wesch W 1995 Mater. Eng. B 29 142

    [56]

    Helf A, Wendler E, Heindl J, Bachmann T, Glaser E, Strunk H P. Wesch W 1996 Nucl. Instrum. Meth. Phys. Res. B 113 239

    [57]
    [58]

    Zhang H H, Zhang C H, Li B S, Han L H, Zhang Y 2010 Nucl. Instrum. Methods. Phys. Res. B 268 2318

    [59]
    [60]

    Sorieul S, Costantini J M, Gosmain L, Thome L, Grob J J 2006 J. Phys. Cons. Matter 18 5235

    [61]
    [62]

    Wang X, Zhang Y W, Liu S Y, Zhao Z Q 2014 Nucl. Instrum. Methods. Phys. Res. B 319 55

    [63]
    [64]
    [65]

    Gao X, Sun G S, Li J M, Zhang Y X, Wang L, Zhao W S, Zeng Y P 2005 Chin. Phys. 14 0599

    [66]

    Sorieul S, Kerbiriou X, Costantini J M, Gosmain L, Calas G, Trautmann C 2012 J. Phys. Cons. Matter 24 125801

    [67]
    [68]
    [69]

    Sorieul S, Costantini J M, Gosmain L, Thome L 2006 J. Phys. Cons. Matter 18 8493

    [70]

    Li B S, Zhang C H, Zhang H H, Shibayama T, Yang Y T 2011 Vacuum 86 452

    [71]
    [72]

    Li M J 2003 Ph. D. Diessertation (Shandong University) (in Chinese) [李美江 2003 博士学位论文 (山东: 山东大学)]

    [73]
    [74]

    Zhang C H, Donnelly S E, Vishnyakov V M, Evans J H, Shibayama T, Sun Y M 2004 Nucl. Instrum. Methods. Phys. Res. B 218 53

    [75]
    [76]

    Weber WJ, Yu N 1997 Nucl. Instrum. Methods. Phys. Res. B 191 127

    [77]
    [78]
    [79]

    Heliou R, Brebner J L, Roorda S 2001 Nucl. Instrum. Methods. Phys. Res. B 175-177 268

  • [1]

    Zhang H H, Zhang C H, Li B S, Zhou L H, Yang Y T, Fu Y C 2009 Acta Phys. Sin. 58 3302 (in Chinese) [张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀 2009 58 3302]

    [2]

    Xu C L, Zhang C H, Li B S, Zhang L Q, Yang Y T, Han L H, Jia X J 2011 Nuclear Physica Review 28 209 (in Chinese) [徐超亮, 张崇宏, 李炳生, 张丽卿, 杨义涛, 韩录会, 贾秀军 2011 原子核物理评论 28 209]

    [3]
    [4]

    Xu P S, Xie C K, Pan H B, Xu F Q 2004 Chin. Phys. 13 2126

    [5]
    [6]

    Qin X F, Wang F X, Liang Y, Fu G, Zhao Y M 2010 Acta Phys. Sin. 59 6390 (in Chinese) [秦希峰, 王凤翔, 梁毅, 付刚, 赵优美 2010 59 6390]

    [7]
    [8]
    [9]

    Zhang C H, Sun Y M, Song Y 2007 Nucl Instr and Meth B 256 243

    [10]
    [11]

    Zhang Y, Zhang C H, Zhou L H 2010 Acta Phys. Sin. 59 4130 (in Chinese) [张勇, 张崇宏, 周丽宏 2010 59 4130]

    [12]
    [13]

    Edmond J A, Withrow S P, Kong H S, Davis R F 1986 Mater. Res. Soc. Proc. 51 395

    [14]
    [15]

    Heera V, Stoemenos J, Kogler R, Skorupa W 1995 J. Appl. Phys. 77 2999

    [16]

    Beaufort M F, Pailloux F, DeclemyA, Barbot J F 2003 J. Appl. Phys. 94 7116

    [17]
    [18]

    Zhang C H, Song Y, Yang Y T, Zhou C L, Wei L, Ma H J 2014 Nucl. Instrum. Methods Phys. Res. B 326 345

    [19]
    [20]
    [21]

    Dong L, Sun G S, Yu J, Zheng L, Liu X F, Zhang F, Yan G G, Li X G, Wang Zh G, Yang F 2013 Chin. Phys. Lett. 30 096105

    [22]
    [23]

    Grisola J, de Mauduit B, Gimbert J, Billon Th, Ben Assayag G, Bourgerette C, Claverie A 1999 Nucl. Instrum. Methods Phys. Res. B 147 62

    [24]

    Heera V, Stoemenos J, Kogler R, Voelskow M, Skorupa W 1999 J. Appl. Phys. 85 1378

    [25]
    [26]

    Persson P O A, Hultman L, Janson M S, Hallen A, Yakimova R, Pankin DSkorupa W 2002 J. Appl. Phys. 92 2501

    [27]
    [28]

    Zhu W, Ruan Y F, Chen J, Ma P F, Wang P F, Huang L 2012 Bulletin Of The Chinese Ceramic Society 31 386 (in Chinese) [祝威, 阮永丰, 陈敬, 马鹏飞, 王鹏飞, 黄丽 2012 硅酸盐通报 31 386]

    [29]
    [30]

    Wang C, Zhang Y M, Zhang Y M 2007 Chin. Phys. 16 1417

    [31]
    [32]
    [33]

    Cheng P, Zhang Y M, Zhang Y M, Guo H 2010 Chin. Phys. B 19 097802

    [34]

    Snead L L, Zinkle S J 1995 Mater. Res. Soc. Proc. 373 377

    [35]
    [36]
    [37]

    Zinkle S J, Snead L L 1996 Nucl. Instrum. Methods Phys. Res. B 116 92

    [38]

    Weber W J, Wang L M, Yu N, Hess N J 1998 Mater. Sci. Eng. A 253 62

    [39]
    [40]
    [41]

    Wendler E, Heft A, Wesch W 1998 Nucl. Instrum. Methods Phys. Res. B 141 105

    [42]

    Heera V, Kogler R, Skorupa W 1995 Appl. Phys. Lett. 67 1999

    [43]
    [44]

    Heft A, Wendler E, Heindl J, Bachmann T, Glaser E, Strunk H P, Wesch W 1996 Nucl. Instrum. MethodsPhys. Res. B 113 239

    [45]
    [46]

    Pacaud Y, Stoemenos J, Brauer G, Yankov R A, Heera V, Voelskow M, Kogler R, Skorupa W 1996 Nucl. Instrum. Methods Phys. Res. B 120 177

    [47]
    [48]

    Hofgen A, Heera V, Eicchorn F, Skorupa W 1998 J. Appl. Phys. 84 4769

    [49]
    [50]

    Bus T, van Veen A, Shiryaev A, Fedorov A V, Schut H, Tichelaar F D, Sietsma J 2003 Mater. Sci. Eng. B 102 269

    [51]
    [52]

    Debelle A, Backman M, Thom L, Nordlund K, Djurabekova F, Weber W J, Monnet I, Pakarinen O H, Garrido F, Paumier F 2014 Nucl. Instrum. Methods. Phys. Res. B 326 326

    [53]
    [54]
    [55]

    Helf A, Wendler E, Bachmann T, Glaser E, Wesch W 1995 Mater. Eng. B 29 142

    [56]

    Helf A, Wendler E, Heindl J, Bachmann T, Glaser E, Strunk H P. Wesch W 1996 Nucl. Instrum. Meth. Phys. Res. B 113 239

    [57]
    [58]

    Zhang H H, Zhang C H, Li B S, Han L H, Zhang Y 2010 Nucl. Instrum. Methods. Phys. Res. B 268 2318

    [59]
    [60]

    Sorieul S, Costantini J M, Gosmain L, Thome L, Grob J J 2006 J. Phys. Cons. Matter 18 5235

    [61]
    [62]

    Wang X, Zhang Y W, Liu S Y, Zhao Z Q 2014 Nucl. Instrum. Methods. Phys. Res. B 319 55

    [63]
    [64]
    [65]

    Gao X, Sun G S, Li J M, Zhang Y X, Wang L, Zhao W S, Zeng Y P 2005 Chin. Phys. 14 0599

    [66]

    Sorieul S, Kerbiriou X, Costantini J M, Gosmain L, Calas G, Trautmann C 2012 J. Phys. Cons. Matter 24 125801

    [67]
    [68]
    [69]

    Sorieul S, Costantini J M, Gosmain L, Thome L 2006 J. Phys. Cons. Matter 18 8493

    [70]

    Li B S, Zhang C H, Zhang H H, Shibayama T, Yang Y T 2011 Vacuum 86 452

    [71]
    [72]

    Li M J 2003 Ph. D. Diessertation (Shandong University) (in Chinese) [李美江 2003 博士学位论文 (山东: 山东大学)]

    [73]
    [74]

    Zhang C H, Donnelly S E, Vishnyakov V M, Evans J H, Shibayama T, Sun Y M 2004 Nucl. Instrum. Methods. Phys. Res. B 218 53

    [75]
    [76]

    Weber WJ, Yu N 1997 Nucl. Instrum. Methods. Phys. Res. B 191 127

    [77]
    [78]
    [79]

    Heliou R, Brebner J L, Roorda S 2001 Nucl. Instrum. Methods. Phys. Res. B 175-177 268

  • [1] 李翔, 尹益辉, 张元章. α-Fe中氦泡极限压强的分子动力学模拟.  , 2021, 70(7): 076101. doi: 10.7498/aps.70.20201409
    [2] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟.  , 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [3] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理.  , 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [4] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯. 中能高浓度氦离子注入对钨微观结构的影响.  , 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [5] 邓发明. 强激光照射对6H-SiC晶体电子特性的影响.  , 2016, 65(10): 107101. doi: 10.7498/aps.65.107101
    [6] 梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺. 温度及深度对钛中氦泡释放过程影响的分子动力学研究.  , 2015, 64(4): 046103. doi: 10.7498/aps.64.046103
    [7] 云志强, 魏汝省, 李威, 罗维维, 吴强, 徐现刚, 张心正. 6H-SiC的飞秒激光超衍射加工.  , 2013, 62(6): 068101. doi: 10.7498/aps.62.068101
    [8] 刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊. 氦对铜钨纳米多层膜界面稳定性的影响.  , 2012, 61(17): 176802. doi: 10.7498/aps.61.176802
    [9] 邓泉, 马勇, 杨晓红, 叶利娟, 张学忠, 张起, 付宏伟. ZnO:Sb薄膜的光致发光及拉曼特性研究.  , 2012, 61(24): 247701. doi: 10.7498/aps.61.247701
    [10] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究.  , 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [11] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性.  , 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [12] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究.  , 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [13] 秦希峰, 王凤翔, 梁毅, 付刚, 赵优美. 铒离子注入6H-SiC的横向离散研究.  , 2010, 59(9): 6390-6393. doi: 10.7498/aps.59.6390
    [14] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究.  , 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [15] 张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀. 碳化硅中氦离子高温注入引入的缺陷及其退火行为的光谱研究.  , 2009, 58(5): 3302-3308. doi: 10.7498/aps.58.3302
    [16] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响.  , 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [17] 周拥华, 张义门, 张玉明, 孟祥志. 6H-SiC pn结紫外光探测器的模拟与分析.  , 2004, 53(11): 3710-3715. doi: 10.7498/aps.53.3710
    [18] 普小云, 杨 正, 江 楠, 陈永康, 戴 宏. 用激光增益获取弱增益拉曼模式的受激拉曼散射光谱.  , 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [19] 尚也淳, 张义门, 张玉明. SiC/SiO2界面粗糙散射对沟道迁移率影响的Monte Carlo研究.  , 2001, 50(7): 1350-1354. doi: 10.7498/aps.50.1350
    [20] 尚也淳, 张义门, 张玉明. 6H-SiC电子输运的Monte Carlo模拟.  , 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
计量
  • 文章访问数:  6267
  • PDF下载量:  498
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-24
  • 修回日期:  2014-06-05
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map