搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米表面相互作用及振动测头模型

陈丽娟 陈晓怀 刘芳芳 王景凡

引用本文:
Citation:

纳米表面相互作用及振动测头模型

陈丽娟, 陈晓怀, 刘芳芳, 王景凡

Nano surface interaction and model of vibrating probe

Chen Li-Juan, Chen Xiao-Huai, Liu Fang-Fang, Wang Jing-Fan
PDF
导出引用
  • 如何实现高精度的测量是现代制造业及微电子技术领域的热点问题之一. 基于微纳米测头的三坐标测量机是当前实现高精度测量的重要手段. 随着测量尺寸的减小, 常用的纳米/微纳尺度的测头与待测表面之间形成静态接触, 其表面相互作用成为了影响其测量精度和可靠性的关键因素之一. 本文基于一种触发式振动测头, 研究了其动力学模型, 并通过对测头纳米尺度表面相互作用的理论分析及数值模拟, 确立了测头振动参数与表面相互作用之间的关联. 实验研究表明, 参数优化后的谐振微纳测头能有效抑制表面作用带来的干扰, 提高测量精度.
    The high precision measurement has been a focus in the field of manufacturing and microelectronics in this year. The micro/nano probe for coordinate measuring machine (CMM) acts as a key characteristic because it can measure the high-aspect-ratio components with high precision. Various micro/nano-CMM probes with different principles and different structures have been developed in the last decade. However, most of these studies focused on the sensing principle and measurement methods. There is little research on the behavior of the surface interaction between the probe tip and the workpiece. And the measurement accuracy and reliability of the current probe, especially those of the low stiffness probe, are limited by interaction forces including capillary force, van der Waals force, electrostatic force and Casimir force. Therefore, it becomes a challenge to reduce the effect of the surface interaction forces for the Micro/nano CMM probe. A new trigger probe based on the vibrating principle is analyzed and an optimal method for the appropriate vibrating parameters is presented in this paper. The structure and principle of the probe are briefly described in the first part. In this system, a tungsten stylus with a tip-ball is fixed to the floating plate, which is supported by four L-shape high-elasticity leaf springs. The fiber Bargg grating (FBG) sensors are used in the probe for micro-CMM due to their superiority in t of small size, high sensitivity, large linear measuring range, immunity to electromagnetic interference, and low cost. One end of FBG is attached to a floating plate, and the other end to a retention plate which is connected with the piezoelectric ceramic actuator (PZT). The probe is driven by the PZT vibrating. Assuming that the driving forces can offset the surface interaction forces, then the probe can be described as a forced vibration model of the spring oscillator. Therefore, the equivalent model of the probe is set up. In the second part, a relationship between the vibration parameters of the probe and the surface interaction can be confirmed. Through theoretical analysis and numerical simulation, the appropriate vibrating parameters including resonance amplitude, velocity and frequency of the probe are designed, which can offset the surface interaction forces. In the third part, a probe is designed based on the above theories and an experimental system is set up to verify its rationality. The results show that the resonant micro/nano probe after optimizing its parameters can effectively reduce the influence of surface forces and improve the measurement accuracy.
      通信作者: 陈丽娟, shawiu2000@163.com
    • 基金项目: 国家自然科学基金(批准号: 51275148, 51205103)资助的课题.
      Corresponding author: Chen Li-Juan, shawiu2000@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51275148, 51205103).
    [1]

    Huang Q X, Yu H J, Huang S, Qian J Z 2013 China Mechanical Engineering 24 1264 (in Chinese) [黄强先, 余慧娟, 黄帅, 钱剑钊 2013 中国机械工程 24 1264]

    [2]

    Zhang X J, Meng Y G, Wen S Z 2004 Acta Phys. Sin. 53 728 (in Chinese) [张向军, 孟勇刚, 温诗铸 2004 53 728]

    [3]

    Richard K L, James C, Claudiu G, Christopher W J, Lakshmi N, Sun W J, Matthew T, Andrew Y 2012 Meas. Sci. Technol. 23 074002

    [4]

    Bos E J C 2011 Precision Engineering 35 228

    [5]

    Danzebrink H U, Dai G, Pohlenz F, Dziomba T, Btefisch S, Flgge J, Bosse H 2012 IEEE Instrumentation { Measurement Technology Conference Graz, Austria, May 13-16, 2012 p898

    [6]

    Michihatam, Takayay, Hayashi T 2008 Annals of the CIRP 57 493

    [7]

    Guo S, Xiong X M, Xu Z L, Sheng P, Tong P 2014 Chin. Phys. B 23 116802

    [8]

    Duan F L, Wang G J, Qiu H B 2012 Acta Phys. Sin. 61 046801 (in Chinese) [段芳莉, 王光建, 仇和兵 2012 61 046801]

    [9]

    James D C, Richard K L 2013 Precision Engineering 37 491

    [10]

    Sergio S, Ibert V, Tewfics, Neil H T, Matteo C 2011 Nanotechnology 22 465705

    [11]

    Liu S S, Zhang C H, Liu J M 2010 Acta Phys. Sin. 59 6902 (in Chinese) [刘思思, 张朝辉, 刘俊铭 2010 59 6902]

    [12]

    Lambert, Pierre 2007 Capillary Forces in Microassembly (New York: Springer) pp163-174

    [13]

    Jacob N, Israelachvili 2011 Intermolecularand Surface Forces Third Edition (California: Academic Press) pp107-132

    [14]

    Sitti M, Hashimoto H 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Atlanta, USA, September 19-23, 1999 p13

    [15]

    Pril W O 2002 Ph. D. Dissertation (Eindhoven: Eindhoven University of Technology)

  • [1]

    Huang Q X, Yu H J, Huang S, Qian J Z 2013 China Mechanical Engineering 24 1264 (in Chinese) [黄强先, 余慧娟, 黄帅, 钱剑钊 2013 中国机械工程 24 1264]

    [2]

    Zhang X J, Meng Y G, Wen S Z 2004 Acta Phys. Sin. 53 728 (in Chinese) [张向军, 孟勇刚, 温诗铸 2004 53 728]

    [3]

    Richard K L, James C, Claudiu G, Christopher W J, Lakshmi N, Sun W J, Matthew T, Andrew Y 2012 Meas. Sci. Technol. 23 074002

    [4]

    Bos E J C 2011 Precision Engineering 35 228

    [5]

    Danzebrink H U, Dai G, Pohlenz F, Dziomba T, Btefisch S, Flgge J, Bosse H 2012 IEEE Instrumentation { Measurement Technology Conference Graz, Austria, May 13-16, 2012 p898

    [6]

    Michihatam, Takayay, Hayashi T 2008 Annals of the CIRP 57 493

    [7]

    Guo S, Xiong X M, Xu Z L, Sheng P, Tong P 2014 Chin. Phys. B 23 116802

    [8]

    Duan F L, Wang G J, Qiu H B 2012 Acta Phys. Sin. 61 046801 (in Chinese) [段芳莉, 王光建, 仇和兵 2012 61 046801]

    [9]

    James D C, Richard K L 2013 Precision Engineering 37 491

    [10]

    Sergio S, Ibert V, Tewfics, Neil H T, Matteo C 2011 Nanotechnology 22 465705

    [11]

    Liu S S, Zhang C H, Liu J M 2010 Acta Phys. Sin. 59 6902 (in Chinese) [刘思思, 张朝辉, 刘俊铭 2010 59 6902]

    [12]

    Lambert, Pierre 2007 Capillary Forces in Microassembly (New York: Springer) pp163-174

    [13]

    Jacob N, Israelachvili 2011 Intermolecularand Surface Forces Third Edition (California: Academic Press) pp107-132

    [14]

    Sitti M, Hashimoto H 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Atlanta, USA, September 19-23, 1999 p13

    [15]

    Pril W O 2002 Ph. D. Dissertation (Eindhoven: Eindhoven University of Technology)

  • [1] 李佳芮, 乐陶然, 尉昊赟, 李岩. 基于脉冲受激布里渊散射光谱的非接触式黏弹性测量.  , 2024, 73(12): 127801. doi: 10.7498/aps.73.20231974
    [2] 宁鲁慧, 张雪, 杨明成, 郑宁, 刘鹏, 彭毅. 活性浴中惰性粒子形状对有效作用力的影响.  , 2024, 73(15): 158202. doi: 10.7498/aps.73.20240650
    [3] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计.  , 2024, 73(8): 084304. doi: 10.7498/aps.73.20240006
    [4] 吉亮亮, 耿学松, 伍艺通, 沈百飞, 李儒新. 超强激光驱动的辐射反作用力效应与极化粒子加速.  , 2021, 70(8): 085203. doi: 10.7498/aps.70.20210091
    [5] 陈延辉, 谢伟博, 代克杰, 高玲肖, 卢山, 陈鑫, 李宇航, 牟笑静. 非谐振式低频电磁-摩擦电复合振动能收集器.  , 2020, 69(20): 208402. doi: 10.7498/aps.69.20200793
    [6] 秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于. 三维绝热简正波-抛物方程理论及应用.  , 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [7] 程正富, 郑瑞伦. 非简谐振动对石墨烯杨氏模量与声子频率的影响.  , 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [8] 刘育良, 陈志刚, 孙大兴, 张广玉. 磁头-磁盘接触作用力对磁记录层信息强度影响规律的定量研究.  , 2015, 64(23): 237502. doi: 10.7498/aps.64.237502
    [9] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应.  , 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [10] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变.  , 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [11] 冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌. 三维燃烧介质和壁面温度的非接触联合重建研究.  , 2012, 61(13): 134702. doi: 10.7498/aps.61.134702
    [12] 程正富, 龙晓霞, 郑瑞伦. 非简谐振动对纳米金刚石表面性质的影响.  , 2012, 61(10): 106501. doi: 10.7498/aps.61.106501
    [13] 姜泽辉, 陆坤权, 厚美瑛, 陈 唯, 陈相君. 振动颗粒混合物中的三明治式分离.  , 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
    [14] 郑瑞伦, 胡先权. 非简谐振动对液氩的临界点与玻意耳线的影响.  , 1994, 43(8): 1254-1261. doi: 10.7498/aps.43.1254
    [15] 李永贵, 庄杰佳, 冀玉领. 用激光的强度比较式F-P空腔锁定技术进行微振动的测量.  , 1989, 38(7): 1162-1166. doi: 10.7498/aps.38.1162
    [16] 董绍静. SU(2)格点规范理论中的重夸克相互作用力及势的计算.  , 1986, 35(9): 1248-1252. doi: 10.7498/aps.35.1248
    [17] 鲍诚光. 结构关联和核的简谐与非谐振动.  , 1975, 24(5): 343-350. doi: 10.7498/aps.24.343
    [18] 张宗烨. 球形核振动中非简谐项的影响.  , 1964, 20(2): 159-163. doi: 10.7498/aps.20.159
    [19] 潘立宙. 边缘简支30°-60°-90° 三角板的平衡 稳定与振动问题.  , 1956, 12(3): 215-245. doi: 10.7498/aps.12.215
    [20] 江安才. 直线式不对称三原分子之振动转动光谱及其势能函数.  , 1944, 5(1): 49-63. doi: 10.7498/aps.5.49
计量
  • 文章访问数:  5911
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-31
  • 修回日期:  2016-01-15
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map