搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁头-磁盘接触作用力对磁记录层信息强度影响规律的定量研究

刘育良 陈志刚 孙大兴 张广玉

引用本文:
Citation:

磁头-磁盘接触作用力对磁记录层信息强度影响规律的定量研究

刘育良, 陈志刚, 孙大兴, 张广玉

Quantitative research into the influence of slider-disk contact force on the information intensity of the magnetic recording layer

Liu Yu-Liang, Chen Zhi-Gang, Sun Da-Xing, Zhang Guang-Yu
PDF
导出引用
  • 磁存储密度的持续增长会导致磁头-磁盘的间距不断减小, 这样, 极有可能引起磁头-磁盘接触退磁的发生, 从而造成磁记录层存储数据的丢失. 为了明确退磁过程中的相应作用关系, 本文通过磁力显微镜的相位成像原理直接给出了磁盘退磁的定量测量方法. 并且依据此方法, 利用纳米划痕实验研究了磁头-磁盘接触作用力对磁记录层信息强度的影响规律. 结果表明:当磁头-磁盘接触作用力超过临界退磁载荷时, 磁记录层的信息强度与磁头-磁盘接触作用力之间存在减函数关系; 在低接触载荷区域中, 即使磁记录层表面没有划痕产生, 磁盘退磁现象仍旧可能发生; 对于任意磁头-磁盘接触作用力, 磁盘表面的破坏区域总是会大于磁记录层的退磁区域; 当磁头反复划刮磁盘的同一位置时, 磁记录层的表面划痕处将出现弹性安定状态, 对应地, 磁记录层的信息强度会趋近于某一定值.
    In order to achieve the requirement of rapid growth of the magnetic storage density, the slider-disk spacing needs to be reduced to less than 2 nm. However, the slider-disk contact can easily occur within such a narrow spacing, and eventually result in the loss of the stored data in the magnetic recording film, i.e., demagnetization of the magnetic disk. Therefore, research into the magnetomechanical relationship related to the slider-disk contact demagnetization is significantly important to identify the demagnetization mechanism and further improve the anti-demagnetization performance of the magnetic disk. In this study, the nanoscratch experiment and the magnetic force microscope technology are used to investigate the magnetomechanical behavior induced by the slider-disk contact. And according to the phase imaging principle of the magnetic force microscope, the relationship between the information intensity of the magnetic recording layer and the magnetic contrast measured by the magnetic force microscope is found. Thus, a quantitative analysis method is proposed, which is different from the previous qualitative observation of the magnetic domain change. Experimental results show that the critical demagnetization load during the slider-disk contact is 120 up N. When the slider-disk contact force exceeds the critical demagnetization load, the increase of slider-disk contact force can lead to the decrease of the information intensity of the magnetic recording layer. And the decay rate of the information intensity will be rapidly enhanced after the slider-disk contact force reaches 380 up N. Moreover, the variation trend of the information intensity with the depth of the residual scratch is the same as that of the information intensity with the slider-disk contact force. Specially, before the slider penetrates the hard carbon layer of the magnetic disk, the slider-disk contact demagnetization still may occur, corresponding to the load cases from 120 up N to 200 up N. In addition, for any slider-disk contact force, the area of the surface damage of the hard carbon layer is always greater than that of the demagnetization of the magnetic recording layer. This phenomenon is related to the elasto-plastic force fields in the hard carbon layer and the magnetic recording layer. Moreover, when the slider repeatedly scratches the same location on the surface of the magnetic disk, the information intensity of the magnetic recording layer will decrease with the increase of scratching number. After the scratching number is beyond 20, the elastic shakedown status may occur in the magnetic recording layer, and correspondingly, the information intensity of the magnetic recording layer can be close to a constant value. This result is derived from the work hardening process during the slider-disk repeatedly scratching.
      通信作者: 刘育良, liuyuliang8301@163.com
    • 基金项目: 中央高校基本科研业务费专项基金(批准号: HIT. NSRIF. 2012037)和国家留学基金(批准号: 留金发[2011]3005)资助的课题.
      Corresponding author: Liu Yu-Liang, liuyuliang8301@163.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.NSRIF.2012037), and the Chinese Scholarship Council (Grant No. CSC[2011]3005).
    [1]

    Pan D, Yan H, Jiang H Y 2014 Acta Phys. Sin. 63 128104 (in Chinese) [潘登, 闫辉, 姜洪源 2014 63 128104]

    [2]

    Ao H R, Chen Y, Dong M, Jiang H Y 2014 Acta Phys. Sin.63 34401 (in Chinese) [敖宏瑞, 陈漪, 董明, 姜洪源 2014 63 34401]

    [3]

    Wang F, Xu X H 2014 Chin. Phys. B 23 36802

    [4]

    Greaves S, Kanai Y, Muraoka H 2009 IEEE Trans. Magn. 45 3823

    [5]

    Dahl J B, Bogy D B 2014 Tribol. Lett. 54 35

    [6]

    Liu B, Zhang M S, Yu S K, Hua W, Ma Y S, Zhou W D, Man Y J 2009 IEEE Trans. Magn. 45 899

    [7]

    Zheng J, Bogy D B 2010 Tribol. Lett. 38 283

    [8]

    Chen C Y, Bogy D B, Bhatia C S 2001 Tribol. Lett. 10 195

    [9]

    Liu Y L, He J, Lou J, Bogy D B, Zhang G Y 2014 Microsyst. Technol. 20 1541

    [10]

    Jeong T G, Bogy D B 1995 IEEE Trans. Magn. 31 1007

    [11]

    Furukawa M, Xu J, Shimizu Y, Kato Y 2008 IEEE Trans. Magn. 44 3633

    [12]

    Xu J, Furukawa M, Shimizu Y, Kato Y 2010 Microsyst. Technol. 45 893

    [13]

    Lee S, He M, Yeo C D, Abo G, Hong Y K, You J H 2012 J. Appl. Phys. 112 084901

    [14]

    Liu Y L, Xiong S M, Lou J, Bogy D B, Zhang G Y 2014 J. Appl. Phys. 115 17B725

    [15]

    Yang L, Diao D F 2014 Tribol. Lett. 54 287

    [16]

    Guo Z Z, Hu X B 2013 Acta Phys. Sin. 62 057501 (in Chinese) [郭子政, 胡旭波 2013 62 057501]

    [17]

    Xu J, Furukawa M, Nakamura A, Honda M 2009 IEEE Trans. Magn. 45 893

    [18]

    Lee S C, Hong S Y, Kim N Y, Ferber J, Che X D Storm B D 2009 ASME J. Tribol. 131 011904

    [19]

    Vakis A, Lee S C, Polycarpou A A 2009 IEEE Trans. Magn. 45 4966

    [20]

    Yang L, Diao D F, Zhan W 2012 Tribol. Lett. 46 329

    [21]

    Katta R R, Polycarpou A A, Lee S C, Suk M 2010 ASME J. Tribol. 132 021902

    [22]

    Tran T N, Liu G R, Xuan H N, Thoi T N 2010 Int. J. Number Meth. Eng. 82 917

  • [1]

    Pan D, Yan H, Jiang H Y 2014 Acta Phys. Sin. 63 128104 (in Chinese) [潘登, 闫辉, 姜洪源 2014 63 128104]

    [2]

    Ao H R, Chen Y, Dong M, Jiang H Y 2014 Acta Phys. Sin.63 34401 (in Chinese) [敖宏瑞, 陈漪, 董明, 姜洪源 2014 63 34401]

    [3]

    Wang F, Xu X H 2014 Chin. Phys. B 23 36802

    [4]

    Greaves S, Kanai Y, Muraoka H 2009 IEEE Trans. Magn. 45 3823

    [5]

    Dahl J B, Bogy D B 2014 Tribol. Lett. 54 35

    [6]

    Liu B, Zhang M S, Yu S K, Hua W, Ma Y S, Zhou W D, Man Y J 2009 IEEE Trans. Magn. 45 899

    [7]

    Zheng J, Bogy D B 2010 Tribol. Lett. 38 283

    [8]

    Chen C Y, Bogy D B, Bhatia C S 2001 Tribol. Lett. 10 195

    [9]

    Liu Y L, He J, Lou J, Bogy D B, Zhang G Y 2014 Microsyst. Technol. 20 1541

    [10]

    Jeong T G, Bogy D B 1995 IEEE Trans. Magn. 31 1007

    [11]

    Furukawa M, Xu J, Shimizu Y, Kato Y 2008 IEEE Trans. Magn. 44 3633

    [12]

    Xu J, Furukawa M, Shimizu Y, Kato Y 2010 Microsyst. Technol. 45 893

    [13]

    Lee S, He M, Yeo C D, Abo G, Hong Y K, You J H 2012 J. Appl. Phys. 112 084901

    [14]

    Liu Y L, Xiong S M, Lou J, Bogy D B, Zhang G Y 2014 J. Appl. Phys. 115 17B725

    [15]

    Yang L, Diao D F 2014 Tribol. Lett. 54 287

    [16]

    Guo Z Z, Hu X B 2013 Acta Phys. Sin. 62 057501 (in Chinese) [郭子政, 胡旭波 2013 62 057501]

    [17]

    Xu J, Furukawa M, Nakamura A, Honda M 2009 IEEE Trans. Magn. 45 893

    [18]

    Lee S C, Hong S Y, Kim N Y, Ferber J, Che X D Storm B D 2009 ASME J. Tribol. 131 011904

    [19]

    Vakis A, Lee S C, Polycarpou A A 2009 IEEE Trans. Magn. 45 4966

    [20]

    Yang L, Diao D F, Zhan W 2012 Tribol. Lett. 46 329

    [21]

    Katta R R, Polycarpou A A, Lee S C, Suk M 2010 ASME J. Tribol. 132 021902

    [22]

    Tran T N, Liu G R, Xuan H N, Thoi T N 2010 Int. J. Number Meth. Eng. 82 917

  • [1] 廖可梁, 何其利, 宋杨, 李荣刚, 宋茂华, 李盼云, 赵海峰, 刘鹏, 朱佩平. 基于实验室光源的透射X射线纳米分辨显微镜研制.  , 2024, 73(17): 178701. doi: 10.7498/aps.73.20240727
    [2] 侯佳佳, 张大成, 冯中琦, 朱江峰. 基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法.  , 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [3] 何霄, 肖小舟, 何滨, 薛平, 肖嘉莹. 基于光声泵浦成像的氧分压测量定量分析.  , 2023, 72(21): 218101. doi: 10.7498/aps.72.20231041
    [4] 曹永泽, 赵越. 交变力磁力显微镜: 在三维空间同时观测静态和动态磁畴.  , 2019, 68(16): 168502. doi: 10.7498/aps.68.20190510
    [5] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂. 基于自吸收量化的激光诱导等离子体表征方法.  , 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [6] 张颖, 张大成, 马新文, 潘冬, 赵冬梅. 基于激光诱导击穿光谱技术定量分析食用明胶中的铬元素.  , 2014, 63(14): 145202. doi: 10.7498/aps.63.145202
    [7] 李正华, 李翔. 交变力磁力显微镜动态成像技术的研究.  , 2014, 63(17): 178503. doi: 10.7498/aps.63.178503
    [8] 张艳, 王增梅, 陈云飞, 郭新立, 孙伟, 袁国亮, 殷江, 刘治国. 0.5Ba(Ti0.8Zr0.2)O3-0.5(Ba0.7Ca0.3)TiO3压电薄膜的摩擦、磨损性能.  , 2013, 62(6): 066802. doi: 10.7498/aps.62.066802
    [9] 张旭, 姚明印, 刘木华. 激光诱导击穿光谱结合偏最小二乘法定量分析脐橙中Cd含量.  , 2013, 62(4): 044211. doi: 10.7498/aps.62.044211
    [10] 安涛, 文懋, 田宏伟, 王丽丽, 宋立军, 郑伟涛. TiN薄膜在纳米压痕和纳米划痕下的断裂行为.  , 2013, 62(13): 136201. doi: 10.7498/aps.62.136201
    [11] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究.  , 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [12] 鲁翠萍, 刘文清, 赵南京, 刘立拓, 陈东, 张玉钧, 刘建国. 土壤重金属铬元素的激光诱导击穿光谱定量分析研究.  , 2011, 60(4): 045206. doi: 10.7498/aps.60.045206
    [13] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析.  , 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [14] 赵华波, 李震, 李睿, 张朝晖, 张岩, 刘宇, 李彦. 碳纳米管网络导电特征的导电型原子力显微镜研究.  , 2009, 58(12): 8473-8477. doi: 10.7498/aps.58.8473
    [15] 张春丽, 祁月盈, 刘学深, 丁培柱. 双色场中高次谐波转化效率提高的数值研究.  , 2009, 58(5): 3078-3083. doi: 10.7498/aps.58.3078
    [16] 马晓菁, 赵红卫, 代 斌, 刘桂锋. 次黄嘌呤及其核苷的THz光谱.  , 2008, 57(6): 3429-3434. doi: 10.7498/aps.57.3429
    [17] 崔执凤, 张先燚, 姚关心, 汪小丽, 许新胜, 郑贤锋, 凤尔银, 季学韩. 铅黄铜合金中痕量元素定量分析的激光诱导击穿谱研究.  , 2006, 55(9): 4506-4513. doi: 10.7498/aps.55.4506
    [18] 陈永祺, 毛允静. 轻元素定量分析的新修正方法.  , 1985, 34(8): 1056-1063. doi: 10.7498/aps.34.1056
    [19] 吴振球. He中N2的光谱定量分析.  , 1961, 17(10): 48-51. doi: 10.7498/aps.17.48
    [20] 光学教研组. 纯锑中杂质含量的光谱定量分析.  , 1959, 15(6): 325-330. doi: 10.7498/aps.15.325
计量
  • 文章访问数:  6056
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-02
  • 修回日期:  2015-08-27
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map