搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理总能量目标函数的稀疏重建模型

马鸽 胡跃明 高红霞 李致富 郭琪伟

引用本文:
Citation:

基于物理总能量目标函数的稀疏重建模型

马鸽, 胡跃明, 高红霞, 李致富, 郭琪伟

Physical total energy based objective function model for sparse reconstruction

Ma Ge, Hu Yue-Ming, Gao Hong-Xia, Li Zhi-Fu, Guo Qi-Wei
PDF
导出引用
  • 欠采样条件下的稀疏重建模型往往直接取稀疏约束项或保真项作为求解的目标函数, 却从未阐述其中的物理演化规律. 针对此问题, 从物理运动的角度出发, 提出了一种基于物理总能量目标函数的稀疏重建模型. 首先, 建立了微粒在黏性介质中的运动模型, 模型中粒子的重力势能函数为松弛变换后的l2-l1 范数; 其次, 基于该微粒的物理总能量建立了新的稀疏重建模型, 该重建模型在保留l2-l1 模型稀疏约束和保真项的基础上, 增加了对相邻两次迭代结果偏差的约束, 避免因该偏差过大引起的震荡; 第三, 提出了针对该模型的梯度投影算法, 并证明了算法的收敛性, 算法在新模型目标函数下的梯度方向总是包含上一步迭代的物理惯性, 从而达到加速收敛和避免局部最优解的目的; 最后, 将该模型应用于标准灰度图像的稀疏重建以及精密电子组装中微焦点X射线缺陷检测. 实验结果表明, 该算法不仅保证了图像的重建质量, 收敛速度还得到了大幅提升. 在精密电子组装内部缺陷检测应用中, 该算法在微焦点X射线图像的边缘细节保留方面有明显的优势, 可更准确地识别缺陷, 满足工业应用快速性和准确性要求.
    Image reconstruction from sparse data is one of the key technologies in physical imaging, and it can often be mathematically described as an underdetermined linear inverse problem. Mathematical models for sparse reconstruction often choose the sparseness constraints or data fidelity term directly as objective functions. However, physics concepts and laws for these modeling or solving processes have never been explored. In this paper, sparse reconstruction is investigated for the first time from the perspective of physical motion. Firstly, a physical model is created to describe a particle motion in viscous medium, in which the particle gravity potential energy function is the norm of l2-l1 after the relaxation transformation. In discrete calculations, the particle displacement is determined by the corresponding iterative result, and its velocity can be described as the change between two adjacent iterations. Then, a new mathematical model based on the physical motion model is studied for sparse reconstruction, in which the total energy of particle is chosen as a new objective function and nonnegative displacements as constraints. This new model preserves sparse constrains and fidelity term of original l2-l1 model, and adds the constrains of deviations between two adjacent iterations so as to avoid oscillations caused by large deviations. Furthermore, a targeted gradient projection technique is adopted to solve such a reconstruction model, and its convergence is discussed as well. Especially in this algorithm, the gradient of this new objective function contains the iterative step of previous iteration, and such iterative steps play the role of physical inertia property in iterative process, which can effectively enlarge the iterative steps to accelerate the convergence and avoid local optima. Finally, two sets of experimental results are presented, including natural grayscale image reconstruction and micro focus X-ray defect detection in precision electronic package. The results demonstrate that the proposed method outperforms its competitors distinctly in time efficiency on the basis of guaranteeing the reconstruction quality. Additionally, on detecting internal defects in solder joint of integrated circuit, the proposed method is well performed in retaining edge details of the reconstructed micro focus X-ray images. Therefore, the proposed method can identify the solder joint internal defects more accurately and is more suitable to rapid and precise micro focus X-ray defect detection in industry.
    • 基金项目: 国家自然科学基金(批准号: 61403146, 61573146)和中央高校基本科研业务费(批准号: x2zd/D2155120)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61403146, 61573146) and the Fundamental Research Funds for the Central Universities of Ministry of Education, China (Grant No. x2zd/D2155120).
    [1]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 62 174212]

    [2]

    Gao H X, Wu L X, Xu H, Kang H, Hu Y M 2014 Optics and Precision Engineering 22 3100 (in Chinese) [高红霞, 吴丽璇, 徐寒, 康慧, 胡跃明 2014 光学精密工程 22 3100]

    [3]

    Gao H X, Chu F G, Wan Y Y, Liu J 2012 Semicond. Technol. 37 815 (in Chinese) [高红霞, 褚夫国, 万燕英, 刘骏 2012 半导体技术 37 815]

    [4]

    Ma Y, L Q B, Liu Y Y, Qian L L, Pei L L 2013 Acta Phys. Sin. 62 204202 (in Chinese) [马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳 2013 62 204202]

    [5]

    Lustig M, Donoho D L, Santos J M, Pauly J M 2008 IEEE Signal Process. Mag. 25 72

    [6]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process. Mag. 25 83

    [7]

    Wang L Y, Liu H K, Li L, Yan B, Zhang H M, Cai A L, Chen J L, Hu G E 2014 Acta Phys. Sin. 63 208702 (in Chinese) [王林元, 刘宏奎, 李磊, 闫镔, 张瀚铭, 蔡爱龙, 陈建林, 胡国恩 2014 63 208702]

    [8]

    Wang L Y, Li L, Yan B, Jiang C S, Wang H Y, Bao S L 2010 Chin. Phys. B 19 088106

    [9]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [10]

    Figueiredo M A T, Nowak R D 2003 IEEE Trans. Image Process. 12 906

    [11]

    Candes E, Romberg J, Tao T 2006 Commun. Pur. Appl. Math. 59 1207

    [12]

    Elad M, Matalon B, Zibulevsky M 2006 Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition New York, USA, June 17-22, 2006 p1924

    [13]

    Candes E J, Tao T 2005 IEEE Trans. Inf. Theory 51 4203

    [14]

    Chen S S, Donoho D L, Saunders M A 1998 SIAM J. Sci. Comput. 20 33

    [15]

    Kim S J, Koh K, Lustig M, Boyd S 2007 Proceedings of the 14th IEEE International Conference on Image Processing San Antonio, USA, September 16-19, 2007 p117

    [16]

    Figueiredo M A T, Nowak R D, Wright S J 2007 IEEE J. Sel. Topics Signal Process. 1 586

    [17]

    Daubechies I, Defrise M, Mol C D 2004 Commun. Pur. Appl. Math. 57 1413

    [18]

    Bioucas-Dias J M, Figueiredo M A T 2007 IEEE Trans. Image Process. 16 2992

    [19]

    Wright S J, Nowak R D, Figueiredo M A T 2009 IEEE Trans. Signal Process. 57 2479

    [20]

    Bonettini S, Zanella R, Zanni L 2009 Inverse Problems 25 015002

    [21]

    Bertsekas D P 1999 Nonlinear Programming (2nd Ed.) (Belmont: Athena Scientific) pp665-668

    [22]

    Nesterov Y 2004 IEEE Trans. Image Process. 13 600

    [23]

    Wang Z, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600

  • [1]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 62 174212]

    [2]

    Gao H X, Wu L X, Xu H, Kang H, Hu Y M 2014 Optics and Precision Engineering 22 3100 (in Chinese) [高红霞, 吴丽璇, 徐寒, 康慧, 胡跃明 2014 光学精密工程 22 3100]

    [3]

    Gao H X, Chu F G, Wan Y Y, Liu J 2012 Semicond. Technol. 37 815 (in Chinese) [高红霞, 褚夫国, 万燕英, 刘骏 2012 半导体技术 37 815]

    [4]

    Ma Y, L Q B, Liu Y Y, Qian L L, Pei L L 2013 Acta Phys. Sin. 62 204202 (in Chinese) [马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳 2013 62 204202]

    [5]

    Lustig M, Donoho D L, Santos J M, Pauly J M 2008 IEEE Signal Process. Mag. 25 72

    [6]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process. Mag. 25 83

    [7]

    Wang L Y, Liu H K, Li L, Yan B, Zhang H M, Cai A L, Chen J L, Hu G E 2014 Acta Phys. Sin. 63 208702 (in Chinese) [王林元, 刘宏奎, 李磊, 闫镔, 张瀚铭, 蔡爱龙, 陈建林, 胡国恩 2014 63 208702]

    [8]

    Wang L Y, Li L, Yan B, Jiang C S, Wang H Y, Bao S L 2010 Chin. Phys. B 19 088106

    [9]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [10]

    Figueiredo M A T, Nowak R D 2003 IEEE Trans. Image Process. 12 906

    [11]

    Candes E, Romberg J, Tao T 2006 Commun. Pur. Appl. Math. 59 1207

    [12]

    Elad M, Matalon B, Zibulevsky M 2006 Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition New York, USA, June 17-22, 2006 p1924

    [13]

    Candes E J, Tao T 2005 IEEE Trans. Inf. Theory 51 4203

    [14]

    Chen S S, Donoho D L, Saunders M A 1998 SIAM J. Sci. Comput. 20 33

    [15]

    Kim S J, Koh K, Lustig M, Boyd S 2007 Proceedings of the 14th IEEE International Conference on Image Processing San Antonio, USA, September 16-19, 2007 p117

    [16]

    Figueiredo M A T, Nowak R D, Wright S J 2007 IEEE J. Sel. Topics Signal Process. 1 586

    [17]

    Daubechies I, Defrise M, Mol C D 2004 Commun. Pur. Appl. Math. 57 1413

    [18]

    Bioucas-Dias J M, Figueiredo M A T 2007 IEEE Trans. Image Process. 16 2992

    [19]

    Wright S J, Nowak R D, Figueiredo M A T 2009 IEEE Trans. Signal Process. 57 2479

    [20]

    Bonettini S, Zanella R, Zanni L 2009 Inverse Problems 25 015002

    [21]

    Bertsekas D P 1999 Nonlinear Programming (2nd Ed.) (Belmont: Athena Scientific) pp665-668

    [22]

    Nesterov Y 2004 IEEE Trans. Image Process. 13 600

    [23]

    Wang Z, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600

  • [1] 李永飞, 郭瑞明, 赵航芳. 浅海内波环境下声场干涉条纹的稀疏重建.  , 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [2] 钟鸣宇, 奚亮, 司福祺, 周海金, 王煜. 基于稀疏优化的烟羽断层重建方法.  , 2019, 68(16): 164205. doi: 10.7498/aps.68.20190268
    [3] 陈锋, 郑娜, 许海波. 质子照相中基于能量损失的密度重建.  , 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [4] 乔志伟. 总变差约束的数据分离最小图像重建模型及其Chambolle-Pock求解算法.  , 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [5] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像.  , 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [6] 丰卉, 孙彪, 马书根. 分块稀疏信号1-bit压缩感知重建方法.  , 2017, 66(18): 180202. doi: 10.7498/aps.66.180202
    [7] 程雪涛, 梁新刚. 熵产最小化理论在传热和热功转换优化中的应用探讨.  , 2016, 65(18): 180503. doi: 10.7498/aps.65.180503
    [8] 王林元, 刘宏奎, 李磊, 闫镔, 张瀚铭, 蔡爱龙, 陈建林, 胡国恩. 基于稀疏优化的计算机断层成像图像不完全角度重建综述.  , 2014, 63(20): 208702. doi: 10.7498/aps.63.208702
    [9] 夏少军, 陈林根, 戈延林, 孙丰瑞. 热漏对换热器(火积)耗散最小化的影响.  , 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [10] 邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤. 基于局部约束群稀疏的红外图像超分辨率重建.  , 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [11] 毛宝林, 陈晓朝, 孝大宇, 范晟昱, 滕月阳, 康雁. 基于全变分最小化和快速一阶方法的低剂量CT有序子集图像重建.  , 2014, 63(13): 138701. doi: 10.7498/aps.63.138701
    [12] 古宇飞, 闫镔, 李磊, 魏峰, 韩玉, 陈健. 基于全变分最小化和交替方向法的康普顿散射成像重建算法.  , 2014, 63(1): 018701. doi: 10.7498/aps.63.018701
    [13] 夏少军, 陈林根, 戈延林, 孙丰瑞. 等温节流过程积耗散最小化.  , 2013, 62(18): 180202. doi: 10.7498/aps.62.180202
    [14] 张品, 梁艳梅, 常胜江, 范海伦. 基于能量最小化的肾脏计算断层扫描图像分割方法.  , 2013, 62(20): 208701. doi: 10.7498/aps.62.208701
    [15] 王林元, 张瀚铭, 蔡爱龙, 闫镔, 李磊, 胡国恩. 非精确交替方向总变分最小化重建算法.  , 2013, 62(19): 198701. doi: 10.7498/aps.62.198701
    [16] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔. 相干X射线衍射成像三维重建的数字模拟研究.  , 2012, 61(1): 018701. doi: 10.7498/aps.61.018701
    [17] 吴亚波, 吕剑波, 李 松, 杨秀一. 五维大反弹宇宙学模型的重建及其相关宇宙学量的演化.  , 2008, 57(4): 2621-2626. doi: 10.7498/aps.57.2621
    [18] 黄群星, 刘 冬, 王 飞, 严建华, 池 涌, 岑可法. 非对称碳氢扩散火焰内烟黑浓度与温度联合重建模型研究.  , 2008, 57(12): 7928-7936. doi: 10.7498/aps.57.7928
    [19] 张国民, 杨传章. 铁磁键稀疏Blume-Capel模型相图的Monte Carlo研究.  , 1993, 42(1): 128-133. doi: 10.7498/aps.42.128
    [20] 张宗燧. 李模型中极点的运动.  , 1965, 21(11): 1882-1888. doi: 10.7498/aps.21.1882
计量
  • 文章访问数:  6161
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-14
  • 修回日期:  2015-05-22
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map