-
发展了考虑一维柱对称、球对称位型下流体演化的Fokker-Planck程序, 在流体力学极限下对程序进行了校验. 利用程序模拟研究了球对称位型、平板位型下等离子体在自由稀疏演化过程中电子热流的非局域热输运行为, 分析了几何位型对电子非局域热传导的影响. 非局域卷积理论的计算研究发现, 稀疏过程中空间的几何效应会减小外向电子热输运的非局域性.
-
关键词:
- Fokker-Planck模拟 /
- 电子热传导 /
- 非局域热流
The electron thermal transport in fluid theory would be inaccurate when the collisionality is not enough, and the Fokker-Planck (FP) simulations are usually employed to resolve the inadequacies. In this paper, the one-dimensional Fokker-Planck code is extended to handle the cylindrical and spherical geometries in which the electron distribution functions are solved in the reference frame of the ion fluid. The FP code is validated in the fluid limit by comparing with fluid (MULTI) simulations. Then, the expansions of plasmas in different spatial geometries are simulated with the FP and fluid codes. As the main characters of nonlocal transport, the electron thermal transport inhibition and preheating are investigated in expanding plasmas. The spherical nonlocal theory can give the thermal transport inhibition and preheating phenomenon, which is exploited to fit the heat flux with variation of fitting parameter . The spherical nonlocal theory will reproduce Spizer-Hrm expression as = 0. Then we analyze the heat flux after the plasma expanding 200 ps with a uniform initial temperature T = 100 eV and density ne= 1 1021 /cm3. By comparing the heat flux computed by spherical nonlocal thermal transport theory and FP simulation, it is found that (n-1)/r term in Eq. (3a) cannot be neglected when the radius is small and the geometrical curvature effect will decrease the nonlocality of transport in outer expanding plasmas. The geometrical curvature effect leads to a smaller thermal transport inhibition and preheating in the expanding plasmas as comparing the spherical case with the planar one. The expansions of plasmas in different spatial geometries are also simulated with the FP and fluid codes under the initial conditions which are similar to the inertial confinement fusion. The same influence of geometrical curvature on nonlocal electron thermal transport are also obtained.-
Keywords:
- Fokker-Planck /
- thermal conductivity /
- nonlocal thermal transport
[1] Spitzer L J, Hrm R 1953 Phys. Rev. 89 977
[2] Bell A R 1996 Transport in Laser-Produced Plasmas, in Laser Plasma Interactions 5 : Inertial Confinement Fusion (Scottish Universities Summer School in Physics Institute of Physics press) pp139-168
[3] Bell A R 1983 Phys. Fluids 26 279
[4] Luciani J F, Mora P, Virmont J 1983 Phys. Rev. Lett. 51 1664
[5] Malone R C, McCrory R L, Morse R L 1975 Phys. Rev. Lett. 34 721
[6] Gotchev O V, Goncharov V N, Knauer J P, Boehly T R, Collins T J B, Epstein R, Jaanimagi P A, Meyerhofer D D 2006 Phys. Rev. Lett. 96 115005
[7] Hu S X, Smalyuk V A, Goncharov V N, Skupsky S, Sangster T C, Meyerhofer D D, Shvarts D 2008 Phys. Rev. Lett. 101 055002
[8] Sunahara A, Delettrez J A, Stoeckl C, Short R W, Skupsky S 2003 Phys. Rev. Lett. 91 095003
[9] Epperlein E M, Short R W 1991 Phys. Fluids B 3 3092
[10] Bychenkov V Y, Rozmus W, Tikhonchuk V T 1995 Phys. Rev. Lett. 75 4405
[11] Weng S M, Sheng Z M, Zhang J 2009 Acta Phys. Sin. 58 454 (in Chinese) [翁苏明, 盛政明, 张杰 2009 58 454]
[12] Thomas A G R, Tzoufras M, Robinson A P L, Kingham R J, Ridgers C P, Sherlock M, Bell A R 2012 Journal of Computational Physics 231 1051
[13] Bychenkov V Y, Matte J P, Johnston T W 1996 Phys. Plasmas 3 3518
[14] Bychenkov V Y, Matte J P, Johnston T W 1996 Phys. Plasmas 3 1280
[15] Soboleva T K, Krasheninnikov S I, Catto P J 2004 Contrib. Plasma Phys. 44 95
[16] Epperlein E M 1994 Laser and Particle Beams 12 257
[17] Zhao B, Zheng J 2008 Plasma Sci. Technol. 10 22
[18] Li J, Zhao B, Li H, Zheng J 2010 Plasma Phys. Control. Fusion 52 085008
[19] Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion Oxford Science Pub. pp133-135
-
[1] Spitzer L J, Hrm R 1953 Phys. Rev. 89 977
[2] Bell A R 1996 Transport in Laser-Produced Plasmas, in Laser Plasma Interactions 5 : Inertial Confinement Fusion (Scottish Universities Summer School in Physics Institute of Physics press) pp139-168
[3] Bell A R 1983 Phys. Fluids 26 279
[4] Luciani J F, Mora P, Virmont J 1983 Phys. Rev. Lett. 51 1664
[5] Malone R C, McCrory R L, Morse R L 1975 Phys. Rev. Lett. 34 721
[6] Gotchev O V, Goncharov V N, Knauer J P, Boehly T R, Collins T J B, Epstein R, Jaanimagi P A, Meyerhofer D D 2006 Phys. Rev. Lett. 96 115005
[7] Hu S X, Smalyuk V A, Goncharov V N, Skupsky S, Sangster T C, Meyerhofer D D, Shvarts D 2008 Phys. Rev. Lett. 101 055002
[8] Sunahara A, Delettrez J A, Stoeckl C, Short R W, Skupsky S 2003 Phys. Rev. Lett. 91 095003
[9] Epperlein E M, Short R W 1991 Phys. Fluids B 3 3092
[10] Bychenkov V Y, Rozmus W, Tikhonchuk V T 1995 Phys. Rev. Lett. 75 4405
[11] Weng S M, Sheng Z M, Zhang J 2009 Acta Phys. Sin. 58 454 (in Chinese) [翁苏明, 盛政明, 张杰 2009 58 454]
[12] Thomas A G R, Tzoufras M, Robinson A P L, Kingham R J, Ridgers C P, Sherlock M, Bell A R 2012 Journal of Computational Physics 231 1051
[13] Bychenkov V Y, Matte J P, Johnston T W 1996 Phys. Plasmas 3 3518
[14] Bychenkov V Y, Matte J P, Johnston T W 1996 Phys. Plasmas 3 1280
[15] Soboleva T K, Krasheninnikov S I, Catto P J 2004 Contrib. Plasma Phys. 44 95
[16] Epperlein E M 1994 Laser and Particle Beams 12 257
[17] Zhao B, Zheng J 2008 Plasma Sci. Technol. 10 22
[18] Li J, Zhao B, Li H, Zheng J 2010 Plasma Phys. Control. Fusion 52 085008
[19] Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion Oxford Science Pub. pp133-135
计量
- 文章访问数: 6059
- PDF下载量: 142
- 被引次数: 0