搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稳态损耗因子的衰减法识别研究

顾金桃 盛美萍

引用本文:
Citation:

稳态损耗因子的衰减法识别研究

顾金桃, 盛美萍

Estimation of steady loss factor with decay rate method

Gu Jin-Tao, Sheng Mei-Ping
PDF
导出引用
  • 根据稳态损耗因子的定义, 推导了含多阶模态的频带稳态损耗因子公式, 得到结论: 稳态损耗因子不一定介于各阶模态损耗因子之间, 而是与各阶模态对振动响应的贡献程度有关. 提出了过程损耗因子的概念, 并给出了利用频带内各模态固有频率、损耗因子和振幅计算过程损耗因子的方法. 当时间趋于无穷时, 过程损耗因子趋于只由最小模态损耗因子贡献的稳态损耗因子. 传统衰减法测试稳态损耗因子在频带内仅有单个模态或模态密集的情况下精度较高, 但对于含有多阶模态且模态不密集的中频带, 采用传统衰减法准确获取稳态损耗因子存在困难. 根据过程损耗因子的特点, 提出了利用时域衰减曲线逐步分离频带内不同衰减特性分量及其响应幅度从而获取稳态损耗因子的方法. 仿真和实验均表明: 提出的利用时域衰减数据获取稳态损耗因子的方法具有很高精度, 可以弥补传统衰减法在中频段损耗因子实验确定中的不足.
    Steady loss factor is derived according to its definition, and a conclusion is obtained that steady loss factor is not always among modal loss factors but related to contributions of each modal response to vibration response. To obtain the conclusions about the range of steady loss factor, four cases are discussed according to positions of the two natural frequencies related to the central frequency. 1) Both natural frequencies are lower than the central frequency. 2) Both natural frequencies are higher than the central frequency. 3) One natural frequency, whose modal loss factor is smaller, is higher than the central frequency and the other natural frequency is lower than the central frequency. 4) One natural frequency, whose modal loss factor is larger, is higher than the central frequency and the other natural frequency is lower than the central frequency. Steady loss factor ranges between modal loss factors only if the frequency, whose value of multiplying modal loss factor is largest, is lower than central frequency of frequency band and at the same time, the frequency, whose value of multiplying modal loss factor is the smallest, is higher than the central frequency. Process loss factor which is a time-dependent function is proposed for the description of loss factor of decay process. Meanwhile, the way to calculate process loss factor with modal frequency, loss factor and amplitude is presented. Process loss factor tends to steady loss factor contributed by the mode with smallest loss factor over time. The accuracy is good enough for traditional decay rate method to estimate steady loss factor when there is only one mode or lots of modes in the frequency band. It is difficult for traditional decay rate method to be used to evaluate steady loss factor in the mid-frequency band where frequency density is not enough. A new method is proposed to estimate steady loss factor through separating the smallest modal loss factor components in the frequency band with time decay curve step by step according to the different decay characteristics. Simulation and experimental results indicate that the proposed method can cover the shortage of traditional decay rate method of estimating the steady loss factor in mid-frequency band.
      通信作者: 顾金桃, gujintao@yeah.net
      Corresponding author: Gu Jin-Tao, gujintao@yeah.net
    [1]

    Wang C, Zhou Y Q, Shen G W 2013 Chin. Phys. B 22 124601

    [2]

    Li X G, Yang K D, Yang Y 2011 Chin. Phys. B 20 064302

    [3]

    Pan X J, He X P 2010 Acta Phys. Sin. 59 7911(in Chinese) [潘晓娟, 贺西平 2010 59 7911]

    [4]

    He X S, Deng F Y 2010 Acta Phys. Sin. 59 25(in Chinese) [和兴锁, 邓峰岩 2010 59 25]

    [5]

    Lyon R H 1975 Statistical Energy Analysis of Dynamical Systems: Theory and Applications (MIT Press) pp3-10

    [6]

    Fahy F J 1994 Philos. T. Roy. Soc. A 346 431

    [7]

    Langley R S, Bardell N S 1998 Aeronaut. J. 102 287

    [8]

    Zhang Q, Hao Z Y, Mao J, Chen X R 2014 Automot. Eng. 36 1004 (in Chinese) [张强, 郝志勇, 毛杰, 陈馨蕊 2014 汽车工程 36 1004]

    [9]

    Yu M S, Zhu Z D 2007 J. Ship Mech. 11 273 (in Chinese) [俞孟萨, 朱正道 2007 船舶力学 11 273]

    [10]

    Li X Z, Zhang X, Liu Q M, Zhang Z J, Li Y D 2013 J. China Railway Soc. 35 101 (in Chinese) [李小珍, 张迅, 刘全民, 张志俊, 李亚东 2013 铁道学报 35 101]

    [11]

    Li L, Wen J H, Cai L 2013 Chin. Phys. B 22 014301

    [12]

    Lei B, Yang K D, Ma Y L 2010 Chin. Phys. B 19 054301

    [13]

    Ning F H, Zhang J 2002 J. Shangdong Inst. Technol. 16 17 (in Chinese) [宁方华, 张建 2002 山东工程学院学报 16 17]

    [14]

    Cheng G L, Guan C B 2006 Noise and Vib. Control 26 105 (in Chinese) [程广利, 关成彬, 胡声亮 2006 噪声与振动控制 26 105]

    [15]

    Schroeder R M 1965 J. Acou. Soc. Am 37 409

    [16]

    Sheng M P, Wang M Q, Sun J C. 2001 J. Northwest. Polytechnical Univ. 19 130 (in Chinese) [盛美萍, 王敏庆, 孙进才 2001 西北工业大学学报 19 130]

    [17]

    Yin B H, Wang M Q, Wu X D 2014 J. Vib. Shock 33 100 (in Chinese) [尹帮辉, 王敏庆, 吴晓东 2014 振动与冲击 33 100]

    [18]

    Sheng M P 2001 Tech. Acoust. 20 56 (in Chinese) [盛美萍 2001 声学技术 20 56]

    [19]

    Ungar E E, Edward J, Kerwin M 1962 J. Acoust. Soc. Am. 34 945

    [20]

    Wang M Q, Sheng M P, Sun J C 2000 J. Northwest. Polytech. Univ. 18 553 (in Chinese) [王敏庆, 盛美萍, 孙进才 2000 西北工业大学学报 18 553]

  • [1]

    Wang C, Zhou Y Q, Shen G W 2013 Chin. Phys. B 22 124601

    [2]

    Li X G, Yang K D, Yang Y 2011 Chin. Phys. B 20 064302

    [3]

    Pan X J, He X P 2010 Acta Phys. Sin. 59 7911(in Chinese) [潘晓娟, 贺西平 2010 59 7911]

    [4]

    He X S, Deng F Y 2010 Acta Phys. Sin. 59 25(in Chinese) [和兴锁, 邓峰岩 2010 59 25]

    [5]

    Lyon R H 1975 Statistical Energy Analysis of Dynamical Systems: Theory and Applications (MIT Press) pp3-10

    [6]

    Fahy F J 1994 Philos. T. Roy. Soc. A 346 431

    [7]

    Langley R S, Bardell N S 1998 Aeronaut. J. 102 287

    [8]

    Zhang Q, Hao Z Y, Mao J, Chen X R 2014 Automot. Eng. 36 1004 (in Chinese) [张强, 郝志勇, 毛杰, 陈馨蕊 2014 汽车工程 36 1004]

    [9]

    Yu M S, Zhu Z D 2007 J. Ship Mech. 11 273 (in Chinese) [俞孟萨, 朱正道 2007 船舶力学 11 273]

    [10]

    Li X Z, Zhang X, Liu Q M, Zhang Z J, Li Y D 2013 J. China Railway Soc. 35 101 (in Chinese) [李小珍, 张迅, 刘全民, 张志俊, 李亚东 2013 铁道学报 35 101]

    [11]

    Li L, Wen J H, Cai L 2013 Chin. Phys. B 22 014301

    [12]

    Lei B, Yang K D, Ma Y L 2010 Chin. Phys. B 19 054301

    [13]

    Ning F H, Zhang J 2002 J. Shangdong Inst. Technol. 16 17 (in Chinese) [宁方华, 张建 2002 山东工程学院学报 16 17]

    [14]

    Cheng G L, Guan C B 2006 Noise and Vib. Control 26 105 (in Chinese) [程广利, 关成彬, 胡声亮 2006 噪声与振动控制 26 105]

    [15]

    Schroeder R M 1965 J. Acou. Soc. Am 37 409

    [16]

    Sheng M P, Wang M Q, Sun J C. 2001 J. Northwest. Polytechnical Univ. 19 130 (in Chinese) [盛美萍, 王敏庆, 孙进才 2001 西北工业大学学报 19 130]

    [17]

    Yin B H, Wang M Q, Wu X D 2014 J. Vib. Shock 33 100 (in Chinese) [尹帮辉, 王敏庆, 吴晓东 2014 振动与冲击 33 100]

    [18]

    Sheng M P 2001 Tech. Acoust. 20 56 (in Chinese) [盛美萍 2001 声学技术 20 56]

    [19]

    Ungar E E, Edward J, Kerwin M 1962 J. Acoust. Soc. Am. 34 945

    [20]

    Wang M Q, Sheng M P, Sun J C 2000 J. Northwest. Polytech. Univ. 18 553 (in Chinese) [王敏庆, 盛美萍, 孙进才 2000 西北工业大学学报 18 553]

  • [1] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析.  , 2022, 71(2): 021401. doi: 10.7498/aps.71.20211083
    [2] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生.  , 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [3] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析.  , 2021, (): . doi: 10.7498/aps.70.20211083
    [4] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析.  , 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [5] 孔德智, 孙超, 李明杨. 浅海环境中基于模态衰减规律加权的子空间检测方法.  , 2020, 69(16): 164301. doi: 10.7498/aps.69.20191948
    [6] 罗积润, 唐彦娜, 樊宇, 彭澍源, 薛谦忠. 分布损耗加载回旋行波管多模稳态注波互作用理论与比较证实.  , 2018, 67(1): 018402. doi: 10.7498/aps.67.20171831
    [7] 李佳蔚, 鹿力成, 郭圣明, 马力. warping变换提取单模态反演海底衰减系数.  , 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [8] 董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙. 单负材料异质结构中损耗诱导的场局域增强和光学双稳态.  , 2016, 65(11): 114207. doi: 10.7498/aps.65.114207
    [9] 吴良威, 张正平. 基于多开口田字形宽频带低损耗左手材料.  , 2016, 65(16): 164101. doi: 10.7498/aps.65.164101
    [10] 何政蕊, 耿友林. 一种新型宽频带低损耗小单元左手材料的设计与实现.  , 2016, 65(9): 094101. doi: 10.7498/aps.65.094101
    [11] 黄霞, 徐灿, 孙玉庭, 高健, 郑志刚. 耦合振子系统的多稳态同步分析.  , 2015, 64(17): 170504. doi: 10.7498/aps.64.170504
    [12] 党可征, 时家明, 李志刚, 孟祥豪, 王启超. 基于高阻抗表面的多频带Salisbury屏设计.  , 2015, 64(11): 114101. doi: 10.7498/aps.64.114101
    [13] 刘宏, 朱京平, 王凯. 基于随机表面微面元理论的二向反射分布函数几何衰减因子修正.  , 2015, 64(18): 184213. doi: 10.7498/aps.64.184213
    [14] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体.  , 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [15] 彭澍源, 王秋实, 张兆传, 罗积润. 回旋行波管多模稳态理论及初步应用.  , 2014, 63(20): 208401. doi: 10.7498/aps.63.208401
    [16] 时培明, 李培, 韩东颖. 色关联乘性和加性色噪声驱动的多稳态系统的稳态特性.  , 2014, 63(17): 170504. doi: 10.7498/aps.63.170504
    [17] 陈爱喜, 陈德海, 王志平. 级联型四能级原子相干介质中的光学双稳态和多稳态.  , 2009, 58(8): 5450-5454. doi: 10.7498/aps.58.5450
    [18] 鄢 舒, 王 殊. 多原子分子气体中声波弛豫衰减谱的重建算法.  , 2008, 57(7): 4282-4291. doi: 10.7498/aps.57.4282
    [19] 朱贤方, 水嘉鹏. 自由衰减法测量线性内耗的准确公式.  , 1996, 45(6): 1010-1015. doi: 10.7498/aps.45.1010
    [20] 李福利. 双光子光学多稳态理论.  , 1983, 32(1): 71-83. doi: 10.7498/aps.32.71
计量
  • 文章访问数:  6223
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-02
  • 修回日期:  2015-04-30
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map