-
无中微子双β衰变至今尚未被观察到, 同时其存在无法被否定. 因此中微子是否是Majorana粒子这个问题目前尚无定论. 本文希望从引力对费米子散射的角度研究通过引力场区分中微子费米子类型的可能性. 对Levi-Civita联络按宇称变换做分解, 在引力场对费米子散射微扰论最低阶近似以及弱引力近似下, 发现一般度规的引力场对狄拉克和马约拉纳费米子量子散射矩阵元差别来自宇称变换下类似矢量的部分; 对克尔度规的引力场散射, 证实不同类型费米子的散射差别与克尔引力源的角动量相关, 其散射矩阵元正比于引力源的质量与角动量乘积的平方. 以上结果为通过引力场区分费米子类型提供了另外一种可能的方法.
-
关键词:
- Majorana费米子 /
- 挠率 /
- 绝对平行引力 /
- 克尔度规
Neutrinoless double beta decay has not been observed so far, and its existence cannot be disproved. Therefore the question whether neutrinos are Majorana particles is still inconclusive. In this paper, we hope to investigate the possibility of distinguishing neutrino fermion types by gravitational fields from the perspective of gravitational scattering of fermions. The Levi-Civita connection is decomposed according to the parity transformation. Under the perturbation therory of gravitational field to fermion quantum scattering and weak gravitational approximation, it is found that the difference between Dirac and Majorana fermion quantum scattering matrix elements of general metric gravitational field comes from similar vector parts under parity transformation; the scattering of the gravitational field on the Kerr metric confirms that the difference in scattering among different types of fermions is related to the angular momentum of the Kerr gravitational source, whose scattering matrix elements are proportional to the square of the product of the mass of the gravitational source and the angular momentum. The above results provide another possible way to distinguish fermion types by gravitational fields.-
Keywords:
- Majorana fermion /
- torsion /
- teleparallel gravity /
- Kerr metric
[1] Majorana E 1937 Nuovo Cim. 14 171Google Scholar
[2] Furry W H 1939 Phys. Rev. 56 1184Google Scholar
[3] Oberauer L, Ianni A, Serenelli A 2020 Solar Neutrino Physics: The Interplay between Particle Physics and Astronomy (Wiley-VCH) pp120–127
[4] Ng K L 1993 Phys. Rev. D 47 5187Google Scholar
[5] Ng K L 1994 Nuovo Cim. B 109 1143Google Scholar
[6] Singh D, Mobed N, Papini G 2006 Phys. Rev. Lett. 97 041101Google Scholar
[7] Menon A, Thalapillil A M 2008 Phys. Rev. D 78 667Google Scholar
[8] Alavi S A, Abbasnezhad A 2012 Grav. Cosmol. 22 288Google Scholar
[9] Nieves J F, Pal P B 2007 Phys. Rev. Lett. 98 288Google Scholar
[10] Lai J H, Xue X 2021 arXiv: 2112.10590[gr-qc]
[11] Arcos H I, Andrade V D, Pereira J G 2004 Int. J. Mod. Phys. D 13 807Google Scholar
[12] Aldrovandi R, Pereira J G 2013 Teleparallel Gravity: An Introduction (Dordrecht: Springer)
-
[1] Majorana E 1937 Nuovo Cim. 14 171Google Scholar
[2] Furry W H 1939 Phys. Rev. 56 1184Google Scholar
[3] Oberauer L, Ianni A, Serenelli A 2020 Solar Neutrino Physics: The Interplay between Particle Physics and Astronomy (Wiley-VCH) pp120–127
[4] Ng K L 1993 Phys. Rev. D 47 5187Google Scholar
[5] Ng K L 1994 Nuovo Cim. B 109 1143Google Scholar
[6] Singh D, Mobed N, Papini G 2006 Phys. Rev. Lett. 97 041101Google Scholar
[7] Menon A, Thalapillil A M 2008 Phys. Rev. D 78 667Google Scholar
[8] Alavi S A, Abbasnezhad A 2012 Grav. Cosmol. 22 288Google Scholar
[9] Nieves J F, Pal P B 2007 Phys. Rev. Lett. 98 288Google Scholar
[10] Lai J H, Xue X 2021 arXiv: 2112.10590[gr-qc]
[11] Arcos H I, Andrade V D, Pereira J G 2004 Int. J. Mod. Phys. D 13 807Google Scholar
[12] Aldrovandi R, Pereira J G 2013 Teleparallel Gravity: An Introduction (Dordrecht: Springer)
计量
- 文章访问数: 3229
- PDF下载量: 43
- 被引次数: 0