搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复杂网络的时间序列双变量相关性波动研究

高湘昀 安海忠 方伟

引用本文:
Citation:

基于复杂网络的时间序列双变量相关性波动研究

高湘昀, 安海忠, 方伟

Research on fluctuation of bivariate correlation of time series based on complex networks theory

Gao Xiang-Yun, An Hai-Zhong, Fang Wei
PDF
导出引用
  • 为了研究具有时间序列特征的双变量之间相关性的波动规律, 本文选取国际原油期货价格和中国大庆原油现货价格作为样本数据, 借鉴统计物理学的方法进行研究.运用粗粒化方法建立了相关性波动模态, 并利用复杂网络理论和分析方法对双变量相关性波动模态的统计、变化规律及其演化机理三个问题进行了分析.结果显示, 双变量相关性波动模态分布具有幂律性、群簇性和周期性, 相关性波动主要通过少数几种模态进行传递和演化.这些研究成果不仅可以作为双变量间相关性波动研究的方法, 也为不同变量间相关性波动一般规律的研究提供了思路.
    In order to study the fluctuation of bivariate correlation which had time series characters, this paper selected International crude oil futures prices and Chinese Daqing crude oil spot prices as the sample data, using the method of statistical physics to study. The modes of fluctuation of correlation were defined by coarse graining process. Then three problems modes' statistics, law of variation and evolution mechanism were analyzed by complex network theory and analytical method. The results indicated that forms of modes showed that consecutive days of weak or strong positive correlation, and modes obeyed the power-law distribution. There were three kinds of sub-groups appearing in the network of fluctuation of bivariate correlation. These sub-groups were fluctuation of weak positive correlation, strong positive correlation and unrelated, and a core mode existed in each category of sub-groups. Transmission and evolution of fluctuation of bivariate correlation were a few modes. The fluctuation of bivariate correlation was transmitted and evolved by a few modes. The fluctuation had periodicity that the transmission among modes need average 8.74 days and a whole volatility cycle need about 18.55 days. These results not only can be the analyze method between two variables but also provides idea for researching a general law in different variables.
    • 基金项目: 国家自然科学基金(批准号: 71173199), 教育部人文社会科学研究规划基金(批准号: 10YJA630001) 和中央高校基本科研业务费专项资金(批准号: 2011PY0215)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 71173199), the Humanities and Social Sciences Planning Funds Project under the Ministry of Education of the PRC (Grant No. 10YJA630001) and The Fundamental Research Funds for the Central Universities (Grant No.2011PY0215).
    [1]

    James E H, Davidson, David F H, Frank S, Yeo S 1978 Econ. J. 88 661

    [2]

    Robert F E, Granger C W J 1987 Econometrica 55 251

    [3]

    Nathan S B, Thomas B F 1997 Int. Econ. Rev. 38 627

    [4]

    Coppola A 2008 J. Futures Mark. 28 34

    [5]

    Svetlana M, Russell S 2009 Energ Policy 37 1687

    [6]

    Huang B N, Yang C W, Hwang M J 2009 Energy Econ. 31 91

    [7]

    Hao B L 1999 Science 51 3

    [8]

    Wackerbauer R, Witt A, Atmanspacher H, Kurths J, Scheingraber H 1994 Chaos Solitons Fractals 4 133

    [9]

    Feng G L, Hou W, Dong W J 2006 Acta Phys. Sin. 55 962 (in Chinese) [封国林, 侯威, 董文杰 2006 55 962]

    [10]

    Zhang D Z 2007 Acta Phys. Sin. 56 3152 (in Chinese) [张佃中2007 56 3152]

    [11]

    Xu P J, Tang Y Y, Zhang J, Zhang Z B, Wang K, Shao Y, Shen H J, Mao Y C 2011 Acta Phys. Chim. Sin. 27 1839 (in Chinese) [许佩军, 唐媛媛, 张静, 张知博, 王昆, 邵颖, 沈虎峻, 毛英臣 2011物理化学学报 27 1839]

    [12]

    Zhang H Y, Wang Y Y, Tao G Q, Gui B, Yin C L, Chai Y M, Que G H 2011 Acta Chim. Sin. 69 2053 (in Chinese) [张宏玉, 王艳艳, 陶国强, 桂彬, 殷长龙, 柴永明 2011 化学学报 69 2053]

    [13]

    Watts D J, Strogatz S H 1998 Nature 393 6684

    [14]

    Newman M E J 1999 Phys. Lett. A 263 341

    [15]

    Barabási A L, Albert R 1999 Science 286 509

    [16]

    Janssen M A, Walker B H, Langridge J, Abel N 2000 Ecol. Modell. 131 249

    [17]

    Zhang L, Liu Y 2008 Acta Phy. Sin. 57 5419 (in Chinese) [张立, 刘云 2008 57 5419]

    [18]

    Kelesa A, Kolcakb M, Keles A 2008 Knowl. Based Syst. 21 951

    [19]

    Zhou L, Gong Z Q, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 7380 (in Chinese) [周磊, 龚志强, 支蓉, 封国林 2008 57 7380]

    [20]

    Chen W D, Xu H, Guo Q 2010 Acta Phys. Sin. 59 4514 (in Chinese) [陈卫东, 徐华, 郭琦 2010 59 4514]

    [21]

    Gao X Y, An H Z, Liu H H, Ding Y H 2011 Acta Phy.sin.60 0689021 (in Chinese) [高湘昀, 安海忠, 刘红红, 丁颖辉 2010 60 0689021]

    [22]

    Yook S H, Jeong H, Barabási A L, Tu Y 2001 Phys. Rev. Lett. 86 5835

    [23]

    Wasserman S, Faust K 1994 Social network analysis: Methods and applications (Cambridge: Cambridge University Press) p275

    [24]

    Ronald S B 1992 Strnctural Holes: the Social Strulture of Competition (Cambridge: Harvard University Press) p66

    [25]

    Barrat A, Barthelemy M, Pastor S R, Vespignani A, 2004 Proc. Nalt. Acad. Sci. U.S.A 101 3747

  • [1]

    James E H, Davidson, David F H, Frank S, Yeo S 1978 Econ. J. 88 661

    [2]

    Robert F E, Granger C W J 1987 Econometrica 55 251

    [3]

    Nathan S B, Thomas B F 1997 Int. Econ. Rev. 38 627

    [4]

    Coppola A 2008 J. Futures Mark. 28 34

    [5]

    Svetlana M, Russell S 2009 Energ Policy 37 1687

    [6]

    Huang B N, Yang C W, Hwang M J 2009 Energy Econ. 31 91

    [7]

    Hao B L 1999 Science 51 3

    [8]

    Wackerbauer R, Witt A, Atmanspacher H, Kurths J, Scheingraber H 1994 Chaos Solitons Fractals 4 133

    [9]

    Feng G L, Hou W, Dong W J 2006 Acta Phys. Sin. 55 962 (in Chinese) [封国林, 侯威, 董文杰 2006 55 962]

    [10]

    Zhang D Z 2007 Acta Phys. Sin. 56 3152 (in Chinese) [张佃中2007 56 3152]

    [11]

    Xu P J, Tang Y Y, Zhang J, Zhang Z B, Wang K, Shao Y, Shen H J, Mao Y C 2011 Acta Phys. Chim. Sin. 27 1839 (in Chinese) [许佩军, 唐媛媛, 张静, 张知博, 王昆, 邵颖, 沈虎峻, 毛英臣 2011物理化学学报 27 1839]

    [12]

    Zhang H Y, Wang Y Y, Tao G Q, Gui B, Yin C L, Chai Y M, Que G H 2011 Acta Chim. Sin. 69 2053 (in Chinese) [张宏玉, 王艳艳, 陶国强, 桂彬, 殷长龙, 柴永明 2011 化学学报 69 2053]

    [13]

    Watts D J, Strogatz S H 1998 Nature 393 6684

    [14]

    Newman M E J 1999 Phys. Lett. A 263 341

    [15]

    Barabási A L, Albert R 1999 Science 286 509

    [16]

    Janssen M A, Walker B H, Langridge J, Abel N 2000 Ecol. Modell. 131 249

    [17]

    Zhang L, Liu Y 2008 Acta Phy. Sin. 57 5419 (in Chinese) [张立, 刘云 2008 57 5419]

    [18]

    Kelesa A, Kolcakb M, Keles A 2008 Knowl. Based Syst. 21 951

    [19]

    Zhou L, Gong Z Q, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 7380 (in Chinese) [周磊, 龚志强, 支蓉, 封国林 2008 57 7380]

    [20]

    Chen W D, Xu H, Guo Q 2010 Acta Phys. Sin. 59 4514 (in Chinese) [陈卫东, 徐华, 郭琦 2010 59 4514]

    [21]

    Gao X Y, An H Z, Liu H H, Ding Y H 2011 Acta Phy.sin.60 0689021 (in Chinese) [高湘昀, 安海忠, 刘红红, 丁颖辉 2010 60 0689021]

    [22]

    Yook S H, Jeong H, Barabási A L, Tu Y 2001 Phys. Rev. Lett. 86 5835

    [23]

    Wasserman S, Faust K 1994 Social network analysis: Methods and applications (Cambridge: Cambridge University Press) p275

    [24]

    Ronald S B 1992 Strnctural Holes: the Social Strulture of Competition (Cambridge: Harvard University Press) p66

    [25]

    Barrat A, Barthelemy M, Pastor S R, Vespignani A, 2004 Proc. Nalt. Acad. Sci. U.S.A 101 3747

  • [1] 汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法.  , 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [2] 赵国涛, 王立夫, 关博飞. 一类影响网络能控性的边集研究.  , 2021, 70(14): 148902. doi: 10.7498/aps.70.20201831
    [3] 张欢, 张皓晶, 陆林, 马凯旋. CGRaBS J2345-1555多波段流量相关性及射电波段多普勒因子估计.  , 2021, 70(21): 219501. doi: 10.7498/aps.70.20210745
    [4] 谭索怡, 祁明泽, 吴俊, 吕欣. 复杂网络链路可预测性: 基于特征谱视角.  , 2020, 69(8): 088901. doi: 10.7498/aps.69.20191817
    [5] 王振华, 刘宗华. 复杂网络上的部分同步化: 奇异态、遥同步与集团同步.  , 2020, 69(8): 088902. doi: 10.7498/aps.69.20191973
    [6] 黄丽亚, 霍宥良, 王青, 成谢锋. 基于K-阶结构熵的网络异构性研究.  , 2019, 68(1): 018901. doi: 10.7498/aps.68.20181388
    [7] 杨青林, 王立夫, 李欢, 余牧舟. 基于相对距离的复杂网络谱粗粒化方法.  , 2019, 68(10): 100501. doi: 10.7498/aps.68.20181848
    [8] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估.  , 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [9] 徐明, 许传云, 曹克非. 度相关性对无向网络可控性的影响.  , 2017, 66(2): 028901. doi: 10.7498/aps.66.028901
    [10] 周建, 贾贞, 李科赞. 复杂网络谱粗粒化方法的改进算法.  , 2017, 66(6): 060502. doi: 10.7498/aps.66.060502
    [11] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述.  , 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [12] 欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡. 疾病传播与级联失效相互作用的研究:度不相关网络中疾病扩散条件的分析.  , 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [13] 刘建国, 任卓明, 郭强, 汪秉宏. 复杂网络中节点重要性排序的研究进展.  , 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [14] 于会, 刘尊, 李勇军. 基于多属性决策的复杂网络节点重要性综合评价方法.  , 2013, 62(2): 020204. doi: 10.7498/aps.62.020204
    [15] 龚志强, 支蓉, 侯威, 王晓娟, 封国林. 基于复杂网络的北半球遥相关年代际变化特征研究.  , 2012, 61(2): 029202. doi: 10.7498/aps.61.029202
    [16] 周漩, 张凤鸣, 周卫平, 邹伟, 杨帆. 利用节点效率评估复杂网络功能鲁棒性.  , 2012, 61(19): 190201. doi: 10.7498/aps.61.190201
    [17] 罗世华, 曾九孙. 基于多分辨分析的高炉铁水含硅量波动多重分形辨识.  , 2009, 58(1): 150-157. doi: 10.7498/aps.58.150
    [18] 郭进利. 新节点的边对网络无标度性影响.  , 2008, 57(2): 756-761. doi: 10.7498/aps.57.756
    [19] 许 丹, 李 翔, 汪小帆. 复杂网络病毒传播的局域控制研究.  , 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
    [20] 刘宏鲲, 周 涛. 中国城市航空网络的实证研究与分析.  , 2007, 56(1): 106-112. doi: 10.7498/aps.56.106
计量
  • 文章访问数:  8920
  • PDF下载量:  1694
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-13
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

/

返回文章
返回
Baidu
map