搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属微结构纳米线中等离激元传播和分光特性

徐地虎 胡青 彭茹雯 周昱 王牧

引用本文:
Citation:

金属微结构纳米线中等离激元传播和分光特性

徐地虎, 胡青, 彭茹雯, 周昱, 王牧

Plasmonic propagation and spectral splitting in nanostructured metal wires

Xu Di-Hu, Hu Qing, Peng Ru-Wen, Zhou Yu, Wang Mu
PDF
导出引用
  • 本文从理论和实验两方面探讨了具有微结构的金属纳米线系统中表面等离激元传播规律和分光特性. 我们由麦克斯韦方程组出发, 利用严格耦合波近似和有限元差分等方法首先从理论上给出了金属纳米线系统中等离激元的色散关系和能带特征, 然后基于微结构的银纳米线及其等离激元能带结构, 设计并制备出等离激元分光原型器件, 实验展示其将不同频率的光在微小空间分离的特性. 该研究结果是我们前期相关工作的延续和补充, 可应用于构造多功能集成的光子芯片和新型亚波长光电材料和器件.
    Due to the coupling of photons with the electrons at a metal-dielectric interface, surface plasmons (SPs) can achieve extreflely small wavelengths and highly localized electromagnetic fields. Hence, plasmonics with subwavelength characteristics can break the diffraction limit of light, and thus has aroused great interest for decades. The SP-inspired reflearch, in the application respect, includes extraordinary optical transmission, surface enhanced Raman spectroscopy, sub-wavelength imaging, electromagnetic induced transparency, perfect absorbers, polarization switches, etc.; and in the fundamental respect, includes plasmon-mediated light-matter interaction, such as plasmonic lasing, plasmon-exciton strong coupling, etc.#br#Recently a series of studies has been performed to push the dimensions of plasmonic devices into deep subwavelength by using nanowires. The chemically synthesized metallic nanowires have good plasmonic properties such as low damping. The reported silver nanowire structures show great potential as plasmonic devices for communication and computation. Now we develop the nanostructured metal wires for plasmonic splitters based on the following considerations. One is that we introduce cascade nano-gratings on a metallic nanowire, enabling a single nanowire to act as a spectral splitting device at subwavelength; and the other is that we use silicon as a substrate for the metallic nanowire, making the plasmonic nanowire device compatible with silicon based technologies.#br#In this paper, we continue and develop our previous work on position-sensitive spectral splitting with a plasmonic nanowire on silicon chip (see Scientific Reports (2013) 3 3095). The three parts are organized as follows. In the first part, we derive analytically the dispersion relation of the SPs in a suspended silver nanowire based on Maxwell equations. In the second part, we placed a silver nanowire in the silicon substrate, and use the finite-element method (FEM) to obtain the dispersion relation of the SPs for the practical applications. The calculations show that the SP mode can be confined better in this system, howbeit with larger loss. Starting from the dispersion relation, we then calculate the mode area, the propagation length and the effective index of the SP modes, with respect to the nanowire dimension and the substrate materials. It is shown that a thinner nanowire has smaller mode area and a higher-index substrate induces larger loss. We also perform the finite-difference time-domain (FDTD) simulation to investigate the electromagnetic field distribution in this system. We find that the SP mode is mainly confined around the top surface of the nanowire, and in the crescent gap between the nanowire and the substrate. In the third part, we demonstrate both experimentally and theoretically that the silver nanowire with two cascaded gratings can act as a spectral splitter for sorting/demultiplexing photons at different spacial locations. The geometry of the grating is optimized by rigorous coupled wave analysis (RCWA) calculation. The carefully designed gratings allow the SPs with the frequencies in the plasmonic band and prohibit the SPs with the frequencies in the plasmonics bandgap. Those prohibited SPs areflemitted out through a single groove in front of each grating. Both the detected images and the measured optical spectra demonstrate that the SPs with different colors can be emitted at different grooves along a single nanowire. Thus the structured metal nanowire shows potential applications in position-sensitive spectral splitting and optical signal processing on a nanoscale, and provides a unique approach to integrating nanophotonics with microelectronics.
    • 基金项目: 国家自然科学基金(批准号: 11034005, 61475070, 11474157)和国家重点基础研究发展计划(批准号: 2012CB921502)资助的课题.
    • Funds: Project supported by th Natural Natural Science Foundation of China (Grant Nos. 11034005, 61475070, 11474157), and the National Basic Research Program of China (Grant No. 2012CB921502).
    [1]

    Ritchie R H 1957 Phys. Rev. 106 874

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [3]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [4]

    Tang Z H, Peng R W, Wang Z, Wu X, Bao Y J, Wang Q J, Zhang Z J, Sun W H, Wang M 2007 Phys. Rev. B 76 195405

    [5]

    Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W, Ming N B 2008 Phys. Rev. Lett. 101 087401

    [6]

    Gao F, Li D, Peng R W, Hu Q, Wei K, Wang Q J, Zhu Y Y, Wang M 2009 Appl. Phys. Lett. 95 011104

    [7]

    Li D, Qin L, Xiong X, Peng R W, Hu Q, Ma G B, Zhou H S, Wang M 2011 Opt. Express 19 22942

    [8]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357

    [9]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318

    [10]

    Garcia-Vidal F J, Pendry J B 1996 Phys. Rev. Lett. 771163

    [11]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [12]

    Kawata S, Inouye Y, Verma P 2009 Nat. Photon. 3 388

    [13]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [14]

    Qin L, Zhang K, Peng R W, Xiong X, Zhang W, Huang X R, Wang M 2013 Phys. Rev. B 87 125136

    [15]

    Zhang K, Wang C, Qin L, Peng R W, Xu D H, Xiong X, Wang M 2014 Opt. Lett. 39 3539

    [16]

    Xiong X, Sun W H, Bao Y J, Peng R W, Wang M, Sun C, Lu X, Shao J, Li Z F, Ming N B 2009 Phys. Rev. B 80 201105

    [17]

    Xiong X, Sun W H, Bao Y J, Wang M, Peng R W, Sun C, Lu X, Shao J, Li Z F, Ming N B 2010 Phys. Rev. B 81 075119

    [18]

    Xiong X, Wang Z W, Fu S J, Wang M, Peng R W, Hao X P, Sun C 2011 Appl. Phys. Lett. 99 181905

    [19]

    Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, Wang M 2013 Phys. Rev. B 88 161104

    [20]

    Xiong X, Xue Z H, Meng C, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Phys. Rev. B 88 115105

    [21]

    Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994

    [22]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [23]

    Gonzalez M U, Weeber J C, Baudrion A L, Dereux A, Stepanov A L, Krenn J R, Devaux E, Ebbesen T W 2006 Phys. Rev. B 73 155416

    [24]

    Xu D H, Zhang K, Shao M R, Wu H W, Fan R H, Peng R W, Wang M 2014 Opt. Express 22 25700

    [25]

    Zhang Z J, Peng R W, Wang Z, Gao F, Huang X R, Sun W H, Wang Q J, Wang M 2008 Appl. Phys. Lett. 93 171110

    [26]

    Kosako T, kadoya Y, Hofmann H F 2010 Nat. Photon. 4 312

    [27]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, Hulst N F V 2010 Science 329 930

    [28]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [29]

    Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nat. Mater. 10 110

    [30]

    Huang X R, Peng R W, Fan R H 2010 Phys. Rev. Lett. 105 243901

    [31]

    Alu A, D’Aguanno G, Mattiucci N, Bloemer M J 2011 Phys. Rev. Lett. 106 123902

    [32]

    Fan R H, Peng R W, Huang X R, Li J. Liu Y M, Hu Q, Wang M, Zhang X 2012 Adv. Mater. 24 1980

    [33]

    Fan R H, Zhu L H, Peng R W, Huang X R, Qi D X, Ren X P, Hu Q, Wang M 2013 Phys. Rev. B 87 195444

    [34]

    Fan R H, Li J, Peng R W, Huang X R, Qi D X, Xu D H, Ren X P, Wang M 2013 Appl. Phys, Lett. 102 171904

    [35]

    Shen Y C, Ye D X, Celanovic I, Johnson S G, Joannopoulos J D, Soljacic M 2014 Science 343 1499

    [36]

    Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111

    [37]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2014 Adv. Mater. 27 1201

    [38]

    Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113

    [39]

    Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D H, Lin S Y 2010 Nano Lett. 10 1704

    [40]

    Alu A, Engheta N 2006 Phys. Rev. B 74 205436

    [41]

    Compaijen P J, Malyshev V A, Knoester J 2013 Phys. Rev. B 87 205437

    [42]

    Wei H, Wang Z X, Tian X R, Kall M, Xu H X 2011 Nat. Comm. 2 387

    [43]

    Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J, Xu H X 2011 Nano Lett. 11 471

    [44]

    Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784

    [45]

    Dreflet A, Koller D, Hohenau A, Leitner A, Aussenegg F R, Krenn J R 2007 Nano Lett. 7 1697

    [46]

    Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J, Xu H X 2010 Nano Lett. 10 1950

    [47]

    Wang G X, Lu H, Liu X M, Mao D, Duan L N 2011 Opt. Express 19 3513

    [48]

    Lerman G M, Yanai A, Levy U 2009 Nano Lett. 9 2139

    [49]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804

    [50]

    Li L, Li T, Wang S M, Zhu S N 2013 Phys. Rev. Lett. 110 046807

    [51]

    Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N D L, Akimov A V, Jo M H, Lukin M D, Park H K 2009 Nat. Phys. 5 475

    [52]

    Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J. Huang X R, Wang M 2013 Sci. Rep. 3 3095

    [53]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp25-34

    [54]

    Bozhevolnyi S I 2009 Plasmonic Nanoguides and Circuits (Singapore: Pan Stanford Publishing Pte. Ltd.) pp1-30

    [55]

    Holmgaard T, Bozhevolnyi S I 2007 Phys. Rev. B 75 245405

    [56]

    Krasavin A V, Zayats A V 2008 Phys. Rev. B 78 045425

    [57]

    Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323

    [58]

    Jin E X, Xu X F 2005 Appl. Phys. Lett. 86 111106

    [59]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496

    [60]

    Yang X D, Liu Y M, Oulton R F, Yin X B, Zhang X 2011 Nano Lett. 11 321

    [61]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [62]

    Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K, Tong L M 2009 Nano Lett. 9 4515

    [63]

    Zhang S P, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801

    [64]

    Wu X Q, Xiao Y, Meng C, Zhang X N, Yu S L, Wang Y P, Yang C X, Guo X, Ning C Z, Tong L M 2013 Nano Lett. 13 5654

    [65]

    Yu H K, Fang W, Wu X Q, Lin X, Tong L M, Liu W T, Wang A M, Shen Y R 2014 Nano Lett. 14 3487

    [66]

    Wu Z, Li H M, Xiong X, Ma G B, Wang M, Peng R W, Ming N B 2009 Appl. Phys. Lett. 94 041120

    [67]

    Vahala K J 2003 Nature 424 839

    [68]

    Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, Vahala K 2009 Nature 457 455

    [69]

    Stratton J A 1941 Electromagnetic Theory(New York: McGraw-Hill Book Company Inc) pp349-361

    [70]

    Moharam M G, Grann E B, Pommet D A 1995 J. Opt. Soc. Am. A 12 1068

    [71]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

    [72]

    Palik E D 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press)

    [73]

    Li Z P, Bao K, Fang Y R, Guan Z Q, Halas N J, Nordlander P, Xu H X 2010 Phys. Rev. B 82 241402

    [74]

    Zhang S P, Xu H X 2012 ACS Nano 6 8128

    [75]

    Wei H, Zhang S P, Tian X R, Xu H X 2013 PNAS 110 4494

    [76]

    Frankel M Y, Esman R D 1998 J. Lightwave Technol. 16 859

    [77]

    Nguyen H G, Cabon B, Poette J, Yu Z, Fonjallaz P Y 2009 IEEE RWS 590

  • [1]

    Ritchie R H 1957 Phys. Rev. 106 874

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [3]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [4]

    Tang Z H, Peng R W, Wang Z, Wu X, Bao Y J, Wang Q J, Zhang Z J, Sun W H, Wang M 2007 Phys. Rev. B 76 195405

    [5]

    Bao Y J, Peng R W, Shu D J, Wang M, Lu X, Shao J, Lu W, Ming N B 2008 Phys. Rev. Lett. 101 087401

    [6]

    Gao F, Li D, Peng R W, Hu Q, Wei K, Wang Q J, Zhu Y Y, Wang M 2009 Appl. Phys. Lett. 95 011104

    [7]

    Li D, Qin L, Xiong X, Peng R W, Hu Q, Ma G B, Zhou H S, Wang M 2011 Opt. Express 19 22942

    [8]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357

    [9]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318

    [10]

    Garcia-Vidal F J, Pendry J B 1996 Phys. Rev. Lett. 771163

    [11]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [12]

    Kawata S, Inouye Y, Verma P 2009 Nat. Photon. 3 388

    [13]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [14]

    Qin L, Zhang K, Peng R W, Xiong X, Zhang W, Huang X R, Wang M 2013 Phys. Rev. B 87 125136

    [15]

    Zhang K, Wang C, Qin L, Peng R W, Xu D H, Xiong X, Wang M 2014 Opt. Lett. 39 3539

    [16]

    Xiong X, Sun W H, Bao Y J, Peng R W, Wang M, Sun C, Lu X, Shao J, Li Z F, Ming N B 2009 Phys. Rev. B 80 201105

    [17]

    Xiong X, Sun W H, Bao Y J, Wang M, Peng R W, Sun C, Lu X, Shao J, Li Z F, Ming N B 2010 Phys. Rev. B 81 075119

    [18]

    Xiong X, Wang Z W, Fu S J, Wang M, Peng R W, Hao X P, Sun C 2011 Appl. Phys. Lett. 99 181905

    [19]

    Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, Wang M 2013 Phys. Rev. B 88 161104

    [20]

    Xiong X, Xue Z H, Meng C, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Phys. Rev. B 88 115105

    [21]

    Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994

    [22]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [23]

    Gonzalez M U, Weeber J C, Baudrion A L, Dereux A, Stepanov A L, Krenn J R, Devaux E, Ebbesen T W 2006 Phys. Rev. B 73 155416

    [24]

    Xu D H, Zhang K, Shao M R, Wu H W, Fan R H, Peng R W, Wang M 2014 Opt. Express 22 25700

    [25]

    Zhang Z J, Peng R W, Wang Z, Gao F, Huang X R, Sun W H, Wang Q J, Wang M 2008 Appl. Phys. Lett. 93 171110

    [26]

    Kosako T, kadoya Y, Hofmann H F 2010 Nat. Photon. 4 312

    [27]

    Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, Hulst N F V 2010 Science 329 930

    [28]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [29]

    Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nat. Mater. 10 110

    [30]

    Huang X R, Peng R W, Fan R H 2010 Phys. Rev. Lett. 105 243901

    [31]

    Alu A, D’Aguanno G, Mattiucci N, Bloemer M J 2011 Phys. Rev. Lett. 106 123902

    [32]

    Fan R H, Peng R W, Huang X R, Li J. Liu Y M, Hu Q, Wang M, Zhang X 2012 Adv. Mater. 24 1980

    [33]

    Fan R H, Zhu L H, Peng R W, Huang X R, Qi D X, Ren X P, Hu Q, Wang M 2013 Phys. Rev. B 87 195444

    [34]

    Fan R H, Li J, Peng R W, Huang X R, Qi D X, Xu D H, Ren X P, Wang M 2013 Appl. Phys, Lett. 102 171904

    [35]

    Shen Y C, Ye D X, Celanovic I, Johnson S G, Joannopoulos J D, Soljacic M 2014 Science 343 1499

    [36]

    Ren X P, Fan R H, Peng R W, Huang X R, Xu D H, Zhou Y, Wang M 2015 Phys. Rev. B 91 045111

    [37]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2014 Adv. Mater. 27 1201

    [38]

    Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113

    [39]

    Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D H, Lin S Y 2010 Nano Lett. 10 1704

    [40]

    Alu A, Engheta N 2006 Phys. Rev. B 74 205436

    [41]

    Compaijen P J, Malyshev V A, Knoester J 2013 Phys. Rev. B 87 205437

    [42]

    Wei H, Wang Z X, Tian X R, Kall M, Xu H X 2011 Nat. Comm. 2 387

    [43]

    Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J, Xu H X 2011 Nano Lett. 11 471

    [44]

    Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784

    [45]

    Dreflet A, Koller D, Hohenau A, Leitner A, Aussenegg F R, Krenn J R 2007 Nano Lett. 7 1697

    [46]

    Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J, Xu H X 2010 Nano Lett. 10 1950

    [47]

    Wang G X, Lu H, Liu X M, Mao D, Duan L N 2011 Opt. Express 19 3513

    [48]

    Lerman G M, Yanai A, Levy U 2009 Nano Lett. 9 2139

    [49]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804

    [50]

    Li L, Li T, Wang S M, Zhu S N 2013 Phys. Rev. Lett. 110 046807

    [51]

    Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N D L, Akimov A V, Jo M H, Lukin M D, Park H K 2009 Nat. Phys. 5 475

    [52]

    Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J. Huang X R, Wang M 2013 Sci. Rep. 3 3095

    [53]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp25-34

    [54]

    Bozhevolnyi S I 2009 Plasmonic Nanoguides and Circuits (Singapore: Pan Stanford Publishing Pte. Ltd.) pp1-30

    [55]

    Holmgaard T, Bozhevolnyi S I 2007 Phys. Rev. B 75 245405

    [56]

    Krasavin A V, Zayats A V 2008 Phys. Rev. B 78 045425

    [57]

    Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323

    [58]

    Jin E X, Xu X F 2005 Appl. Phys. Lett. 86 111106

    [59]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496

    [60]

    Yang X D, Liu Y M, Oulton R F, Yin X B, Zhang X 2011 Nano Lett. 11 321

    [61]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [62]

    Guo X, Qiu M, Bao J M, Wiley B J, Yang Q, Zhang X N, Ma Y G, Yu H K, Tong L M 2009 Nano Lett. 9 4515

    [63]

    Zhang S P, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801

    [64]

    Wu X Q, Xiao Y, Meng C, Zhang X N, Yu S L, Wang Y P, Yang C X, Guo X, Ning C Z, Tong L M 2013 Nano Lett. 13 5654

    [65]

    Yu H K, Fang W, Wu X Q, Lin X, Tong L M, Liu W T, Wang A M, Shen Y R 2014 Nano Lett. 14 3487

    [66]

    Wu Z, Li H M, Xiong X, Ma G B, Wang M, Peng R W, Ming N B 2009 Appl. Phys. Lett. 94 041120

    [67]

    Vahala K J 2003 Nature 424 839

    [68]

    Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, Vahala K 2009 Nature 457 455

    [69]

    Stratton J A 1941 Electromagnetic Theory(New York: McGraw-Hill Book Company Inc) pp349-361

    [70]

    Moharam M G, Grann E B, Pommet D A 1995 J. Opt. Soc. Am. A 12 1068

    [71]

    Rakic A D, Djurisic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

    [72]

    Palik E D 1998 Handbook of Optical Constants of Solids (San Diego: Academic Press)

    [73]

    Li Z P, Bao K, Fang Y R, Guan Z Q, Halas N J, Nordlander P, Xu H X 2010 Phys. Rev. B 82 241402

    [74]

    Zhang S P, Xu H X 2012 ACS Nano 6 8128

    [75]

    Wei H, Zhang S P, Tian X R, Xu H X 2013 PNAS 110 4494

    [76]

    Frankel M Y, Esman R D 1998 J. Lightwave Technol. 16 859

    [77]

    Nguyen H G, Cabon B, Poette J, Yu Z, Fonjallaz P Y 2009 IEEE RWS 590

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱.  , 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 孟勇军, 李洪, 唐建伟, 陈学文. 基于等离激元纳腔的单颗粒稀土掺杂纳米晶上转换发光光谱调控.  , 2022, 71(2): 027801. doi: 10.7498/aps.71.20211438
    [3] 孟勇军, 李洪, 唐建伟, 陈学文. 基于等离激元纳腔的单颗粒稀土掺杂纳米晶上转换发光光谱调控.  , 2021, (): . doi: 10.7498/aps.70.20211438
    [4] 殷允桥, 吴宏伟. 基于人工表面等离激元结构的超表面磁镜.  , 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [5] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究.  , 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [6] 朱旭鹏, 张轼, 石惠民, 陈智全, 全军, 薛书文, 张军, 段辉高. 金属表面等离激元耦合理论研究进展.  , 2019, 68(24): 247301. doi: 10.7498/aps.68.20191369
    [7] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用.  , 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [8] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [9] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身.  , 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [10] 李盼. 表面等离激元纳米聚焦研究进展.  , 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [11] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学.  , 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [12] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗.  , 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [13] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性.  , 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [14] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究.  , 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [15] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X辐射谱线的分离及电子温度的提取.  , 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [16] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究.  , 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [17] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析.  , 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [18] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究.  , 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [19] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响.  , 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [20] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究.  , 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
计量
  • 文章访问数:  7149
  • PDF下载量:  882
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-05
  • 修回日期:  2015-04-16
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map