搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹波被动遥感卷云微物理参数的敏感性试验分析

李书磊 刘磊 高太长 黄威 胡帅

引用本文:
Citation:

太赫兹波被动遥感卷云微物理参数的敏感性试验分析

李书磊, 刘磊, 高太长, 黄威, 胡帅

Sensitivity analysis of terahertz wave passive remote sensing of cirrus microphysical parameters

Li Shu-Lei, Liu Lei, Gao Tai-Chang, Huang Wei, Hu Shuai
PDF
导出引用
  • 太赫兹波长和典型卷云的冰晶粒子尺度处于同一量级, 其在遥感卷云微物理参数(粒子尺度和冰水路径)方面具有广阔的应用前景. 为了评估卷云微物理参数对太赫兹波传输特性的影响及其在太赫兹波段的敏感性, 基于大气辐射传输模式分别模拟计算了晴空和有云条件下大气层顶的太赫兹辐射光谱特征, 分析了这两种条件下辐射亮温差值的特点, 研究了卷云冰晶粒子形状、粒子尺度及冰水路径对太赫兹辐射传输特性的影响, 并定量计算了相关敏感系数. 结果表明: 卷云冰晶粒子形状、粒子尺度、冰水路径等对太赫兹波传输特性均有不同程度的影响, 卷云效应也因通道频率而异, 太赫兹波对卷云的粒子尺度和冰水路径有较高的敏感性, 是理论上被动遥感卷云微物理特性的最佳波段. 研究结果对于进一步发展太赫兹波被动遥感卷云技术、提高卷云参数的反演精度具有重要意义.
    Cirrus clouds play an important role in the energy budget and the hydrological cycle of the atmosphere. It is still one of the largest uncertainties in the global climate change studies. This is mainly attributable to the measurement discrepancies of cirrus parameters, especially the microphysical parameters, which are constrained by the existing methods. With THz wavelengths on the order of the size of typical cirrus cloud particles and therefore being sensitive to cirrus clouds, THz region is expected to have a promising prospect concerning measuring cirrus microphysical parameters (ice water path and effective particle size). In order to evaluate the effects of cirrus microphysical parameters on THz transmission characteristics and the sensitivity of cirrus in THz region, the THz radiation spectra at the top of atmosphere in the clear sky and the cloudy situations are simulated and calculated based on the atmospheric radiative transfer simulator. The effects of cirrus particle shape, particle size and ice water path on THz transmission characteristics are obtained by analyzing the brightness temperature difference between the two situations, and the sensitivity parameters that quantitatively describ the effects. The results indicate that cirrus particle shape, particle size and ice water path have different effects on the THz wave propagation. The cirrus effect varies also with channel frequency. Overall, in the low frequency channels, cirrus effects are enhanced with the increases of particle size and ice water path; in the high frequency channels, cirrus effects are more complicated and vary with particle size and ice water path. The effects are first enhanced and then turned into saturation. The THz wave is sensitive to cirrus cloud ice water path and effective particle size, and THz wave may be the best waveband for remote sensing of cirrus microphysical parameters in theory. For thin clouds, the sensitivity parameters are approximately constant, indicating that the spectral brightness temperature at the top of the atmosphere almost shows linear relationship with ice water path, and the sensitivity parameters increase with frequency increasing. For thick clouds, the sensitivity of cirrus to ice water path decreases and gradually becomes saturated, and the higher the frequency, the more quickly it tends to saturation level. Compared with the microwave and infrared, THz wave can provide many detailed information about cirrus. The two-channel look-up table indicates that THz wave passive remote sensing of cirrus may be a stable and effective method. The results will be conducible to developing the technology of THz wave remote sensing of cirrus microphysical parameters. Moreover, it is also beneficial to improving the cirrus detection precision.
      通信作者: 刘磊, liuleidll@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 41575024)资助的课题.
      Corresponding author: Liu Lei, liuleidll@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41575024).
    [1]

    Rossow W B, Schiffer R A 1991 Bull. Amer. Meteor. Soc. 72 2

    [2]

    Parry M L, Canziani O F, Palutikof J P, van der Linden P J, Hanson C E 2007 Climate change 2007: Impacts, Adaptation and Vulnerability (Cambridge: Cambridge University Press) pp214-223

    [3]

    King M D, Tsay S C, Platnick S E, Wang M, Liou K N 1997 Tech. Rep. ATBD-MOD-05

    [4]

    Xue L F, Wei H L, Rao R Z 2004 Laser Infrared 34 286(in Chinese) [薛立芳, 魏合理, 饶瑞中 2004 激光与红外 34 286]

    [5]

    Mendrok J, Wu D L, Stefan A B 2009 Sensors, Systems and Next-generation Satellites XIII Berlin, Germany, August 31 2009 p74740T-1

    [6]

    Austin R T, Heymsfield A J, Stephens G L 2009 J. Geophys. Res. 114 D00A23

    [7]

    Stephens G L, Tsay S C, Stackhouse P W Jr 1990 J. Atmosph. Sci. 47 1742

    [8]

    Larry M, Miloshevich, Andrew J H 1996 J. Atmosph. Ocean. Technol. 14 753

    [9]

    Andrew J H, Aron B, Carl S 2004 Am. Meteorol. Soc. 61 982

    [10]

    Jeffrey L S, Julie A H, Andrew J H 2004 Am. Meteorol. Soc. 43 779

    [11]

    Sassen K, CHO B S 1992 J. Appl. Meteor. 31 1275

    [12]

    Minnis P, Heck P W, Young D F 1993 J. Atmosph. Sci. 50 1305

    [13]

    Yao J Q, Wang J L, Zhong K, Wang R, Xu D G, Ding X, Zhang F, Wang P 2010 J. Optoelectr. Laser 21 1582 (in Chinese) [姚建铨, 汪静丽, 钟凯, 王然, 徐德刚, 丁欣, 张帆, 王鹏 2010 光电子激光 21 1582]

    [14]

    Zhang R, Li H, Cao J C, Feng S L 2009 Acta Phys. Sin. 58 4618 (in Chinese) [张戎, 黎华, 曹俊诚, 封松林 2009 58 4618]

    [15]

    Tan Z Y, Chen Z, Han Y J, Zhang R, Li H, Guo X G, Cao J C 2012 Acta Phys. Sin. 61 098701 (in Chinese) [谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚 2012 61 098701]

    [16]

    Evans K F, Walter S J, Heymsfield A J, McFarquhar G M 2002 J. Geophys. Res. 107 AAC2-1

    [17]

    Jimenez C, Buehler S A, Rydberg B, Eriksson P, Evans K F 2007 Q. J. R. Meteorol. 133 129

    [18]

    Zhao H B, Zheng C, Zhang Y F, Liang B, Ou N M, Miao J G 2014 Prog. Electromagn. Res. M 35 183

    [19]

    Evans K F, Wang J R, Racette P E, Heymsfield G, Li L H 2004 J. Appl. Meteorol. 44 839

    [20]

    Buehler S A, Defer E, Evans K F, Eliasson S, Mendrok J, Eriksson P, Lee C, Jimenez C, Prigent C, Crewell S, Kasai Y, Bennartz R, Gasiewski A J 2012 Atmos. Meas. Tech. 5 1529

    [21]

    Evans K F, Walter S J, Heymsfield A J, Deeter M N 1998 J. Appl. Meteorol. 37 184

    [22]

    Mendrok J, Baron P, Yasuko K 2008 Remote Sensing of Clouds and the Atmosphere XIII Cardiff, United Kingdom, September 15, 2008 p710704

    [23]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C 2013 J. Quantit. Spectrosc. Radiat. Transfer 130 4

    [24]

    Buehler S A, Eriksson P, Kuhna T 2005 J. Quantitat. Spectrosc. Radiat. Transfer 91 65

    [25]

    Eriksson P, Buehler S A, Davis C P 2011 J. Quantitat. Spectrosc. Radiat. Transfer 112 1551

    [26]

    Hong G, Yang P, Baum B A, Heymsfield A J, Weng F Z, Liu Q H, Heygster G, Buehler S A 2009 J. Geophys. Res. 114 D06201

    [27]

    Mtzler C 2002 MATLAB Functions for Mie Scattering and Absorption Institute of Applied Physics, University of Bern, June 2002

    [28]

    Anderson G P, Clough S A, Kneizys F X 1986 AFGL Atmospheric Constituent Profiles (0-120 km) (Hanscom Massachusetts: Optical Physics Division, Air Force Geophysics Laboratory) pp21-35

    [29]

    Jeffrey L S, Dye J E, Bansemer A, Heymsfield A J, Grainger C A, Petersen W A, Cifelli R 2002 J. Appl. Meteorol. 41 97

    [30]

    Yang P, Liou K N 2000 J. Geophys. Res. 105 4699

    [31]

    McFarquhar G M, Heymsfield A J 1997 Am. Meteorol. Soc. 54 2187

    [32]

    Liou K N 2002 An Introduction to Atmospheric Radiation Second Edition (New York: Academic Press) pp170-176

    [33]

    Heymsfield A J, Miloshevich L M 2002 Am. Meteorol. Soc. 60 937

    [34]

    Heymsfield A J, Aron B, Paul R F, Durden S L, Jeffrey L S, Dye J E, William H, Grainger C A 2002 Am. Meteorol. Soc. 59 3457

  • [1]

    Rossow W B, Schiffer R A 1991 Bull. Amer. Meteor. Soc. 72 2

    [2]

    Parry M L, Canziani O F, Palutikof J P, van der Linden P J, Hanson C E 2007 Climate change 2007: Impacts, Adaptation and Vulnerability (Cambridge: Cambridge University Press) pp214-223

    [3]

    King M D, Tsay S C, Platnick S E, Wang M, Liou K N 1997 Tech. Rep. ATBD-MOD-05

    [4]

    Xue L F, Wei H L, Rao R Z 2004 Laser Infrared 34 286(in Chinese) [薛立芳, 魏合理, 饶瑞中 2004 激光与红外 34 286]

    [5]

    Mendrok J, Wu D L, Stefan A B 2009 Sensors, Systems and Next-generation Satellites XIII Berlin, Germany, August 31 2009 p74740T-1

    [6]

    Austin R T, Heymsfield A J, Stephens G L 2009 J. Geophys. Res. 114 D00A23

    [7]

    Stephens G L, Tsay S C, Stackhouse P W Jr 1990 J. Atmosph. Sci. 47 1742

    [8]

    Larry M, Miloshevich, Andrew J H 1996 J. Atmosph. Ocean. Technol. 14 753

    [9]

    Andrew J H, Aron B, Carl S 2004 Am. Meteorol. Soc. 61 982

    [10]

    Jeffrey L S, Julie A H, Andrew J H 2004 Am. Meteorol. Soc. 43 779

    [11]

    Sassen K, CHO B S 1992 J. Appl. Meteor. 31 1275

    [12]

    Minnis P, Heck P W, Young D F 1993 J. Atmosph. Sci. 50 1305

    [13]

    Yao J Q, Wang J L, Zhong K, Wang R, Xu D G, Ding X, Zhang F, Wang P 2010 J. Optoelectr. Laser 21 1582 (in Chinese) [姚建铨, 汪静丽, 钟凯, 王然, 徐德刚, 丁欣, 张帆, 王鹏 2010 光电子激光 21 1582]

    [14]

    Zhang R, Li H, Cao J C, Feng S L 2009 Acta Phys. Sin. 58 4618 (in Chinese) [张戎, 黎华, 曹俊诚, 封松林 2009 58 4618]

    [15]

    Tan Z Y, Chen Z, Han Y J, Zhang R, Li H, Guo X G, Cao J C 2012 Acta Phys. Sin. 61 098701 (in Chinese) [谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚 2012 61 098701]

    [16]

    Evans K F, Walter S J, Heymsfield A J, McFarquhar G M 2002 J. Geophys. Res. 107 AAC2-1

    [17]

    Jimenez C, Buehler S A, Rydberg B, Eriksson P, Evans K F 2007 Q. J. R. Meteorol. 133 129

    [18]

    Zhao H B, Zheng C, Zhang Y F, Liang B, Ou N M, Miao J G 2014 Prog. Electromagn. Res. M 35 183

    [19]

    Evans K F, Wang J R, Racette P E, Heymsfield G, Li L H 2004 J. Appl. Meteorol. 44 839

    [20]

    Buehler S A, Defer E, Evans K F, Eliasson S, Mendrok J, Eriksson P, Lee C, Jimenez C, Prigent C, Crewell S, Kasai Y, Bennartz R, Gasiewski A J 2012 Atmos. Meas. Tech. 5 1529

    [21]

    Evans K F, Walter S J, Heymsfield A J, Deeter M N 1998 J. Appl. Meteorol. 37 184

    [22]

    Mendrok J, Baron P, Yasuko K 2008 Remote Sensing of Clouds and the Atmosphere XIII Cardiff, United Kingdom, September 15, 2008 p710704

    [23]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C 2013 J. Quantit. Spectrosc. Radiat. Transfer 130 4

    [24]

    Buehler S A, Eriksson P, Kuhna T 2005 J. Quantitat. Spectrosc. Radiat. Transfer 91 65

    [25]

    Eriksson P, Buehler S A, Davis C P 2011 J. Quantitat. Spectrosc. Radiat. Transfer 112 1551

    [26]

    Hong G, Yang P, Baum B A, Heymsfield A J, Weng F Z, Liu Q H, Heygster G, Buehler S A 2009 J. Geophys. Res. 114 D06201

    [27]

    Mtzler C 2002 MATLAB Functions for Mie Scattering and Absorption Institute of Applied Physics, University of Bern, June 2002

    [28]

    Anderson G P, Clough S A, Kneizys F X 1986 AFGL Atmospheric Constituent Profiles (0-120 km) (Hanscom Massachusetts: Optical Physics Division, Air Force Geophysics Laboratory) pp21-35

    [29]

    Jeffrey L S, Dye J E, Bansemer A, Heymsfield A J, Grainger C A, Petersen W A, Cifelli R 2002 J. Appl. Meteorol. 41 97

    [30]

    Yang P, Liou K N 2000 J. Geophys. Res. 105 4699

    [31]

    McFarquhar G M, Heymsfield A J 1997 Am. Meteorol. Soc. 54 2187

    [32]

    Liou K N 2002 An Introduction to Atmospheric Radiation Second Edition (New York: Academic Press) pp170-176

    [33]

    Heymsfield A J, Miloshevich L M 2002 Am. Meteorol. Soc. 60 937

    [34]

    Heymsfield A J, Aron B, Paul R F, Durden S L, Jeffrey L S, Dye J E, William H, Grainger C A 2002 Am. Meteorol. Soc. 59 3457

  • [1] 李翰楠, 彭滟. 激光脉冲啁啾影响双色激光场诱导气体产生太赫兹辐射特性的理论研究.  , 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [2] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射.  , 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [3] 张帆, 许涌, 柳洋, 程厚义, 张晓强, 杜寅昌, 吴晓君, 赵巍胜. 磁控溅射法生长Bi2Te3/CoFeB双层异质结太赫兹发射.  , 2020, 69(20): 200705. doi: 10.7498/aps.69.20200634
    [4] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控.  , 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [5] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究.  , 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [6] 王明军, 魏亚飞, 柯熙政. 复杂大气背景下机载通信终端与无人机目标之间的激光传输特性研究.  , 2019, 68(9): 094203. doi: 10.7498/aps.68.20182052
    [7] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究.  , 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [8] 李书磊, 刘磊, 高太长, 胡帅, 黄威. 基于多重查找表的太赫兹波段卷云微物理参数的反演方法.  , 2017, 66(5): 054102. doi: 10.7498/aps.66.054102
    [9] 吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩. 常规气象参数估算南极泰山站近地面大气光学湍流强度.  , 2017, 66(3): 039201. doi: 10.7498/aps.66.039201
    [10] 李红祺. 随机平衡设计傅里叶振幅敏感性分析方法和拓展傅里叶振幅敏感性分析方法在陆面过程模式敏感性分析中的应用探索.  , 2015, 64(6): 069201. doi: 10.7498/aps.64.069201
    [11] 朱卫卫, 张秋菊, 张延惠, 焦扬. 电子在激光驻波场中运动产生的太赫兹及X射线辐射研究.  , 2015, 64(12): 124104. doi: 10.7498/aps.64.124104
    [12] 刁利杰, 张小飞, 陈帝伊. 分数阶并联RLαCβ电路.  , 2014, 63(3): 038401. doi: 10.7498/aps.63.038401
    [13] 王建栋, 郭维栋, 李红祺. 拓展傅里叶幅度敏感性检验(EFAST)在陆面过程模式中参数敏感性分析的应用探索.  , 2013, 62(5): 050202. doi: 10.7498/aps.62.050202
    [14] 张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云. 具有分离门的电抽运多层石墨烯负动态电导率的理论研究.  , 2012, 61(4): 047803. doi: 10.7498/aps.61.047803
    [15] 张铠云, 杜海伟, 陈民, 盛政明. 基于光场离化电流机制产生强太赫兹辐射的参数优化研究.  , 2012, 61(16): 160701. doi: 10.7498/aps.61.160701
    [16] 祁春超, 欧阳征标. 基于600—2000 nm抽运源的太赫兹相干光源的最新进展.  , 2011, 60(9): 090704. doi: 10.7498/aps.60.090704
    [17] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究.  , 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [18] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析.  , 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [19] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响.  , 2009, 58(12): 8326-8331. doi: 10.7498/aps.58.8326
    [20] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究.  , 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
计量
  • 文章访问数:  6560
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-18
  • 修回日期:  2016-04-22
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map