搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阴极荧光在表面等离激元研究领域的应用

姜美玲 郑立恒 池骋 朱星 方哲宇

引用本文:
Citation:

阴极荧光在表面等离激元研究领域的应用

姜美玲, 郑立恒, 池骋, 朱星, 方哲宇

Research progress of plasmonic cathodoluminesecence characterization

Jiang Mei-Ling, Zheng Li-Heng, Chi Cheng, Zhu Xing, Fang Zhe-Yu
PDF
导出引用
  • 表面等离激元以其独特的光学性质广泛应用于纳米尺度的局域电磁场增强、超高分辨成像及微弱光电探测.阴极荧光是电子与物质相互作用而产生的光学响应,利用电子束激发金属纳米结构能够实现局域等离激元共振,并在亚波长尺度实现对共振模式的调控,具有超高空间分辨的成像特点.阴极荧光探测通常结合扫描电子显微镜或透射电子显微镜而实现,目前已被应用于表面等离激元的探测及共振模式的分析.本文从阴极荧光物理机理出发,综述了单一金属纳米结构和金属耦合结构的等离激元共振模式阴极荧光研究进展,并总结了阴极荧光与角分辨、时间分辨以及电子能量损失谱等关键技术相结合的应用,进一步分析了其面临的关键问题,最后展望了阴极荧光等离激元研究方向.
    Surface plasmons as the collective electrons oscillation at the interface of metal and dielectric materials, have induced tremendous applications for the nanoscale light focusing, waveguiding, coupling, and photodetection. As the development of the modern technology, cathodoluminescence (CL) has been successfully applied to describe the plasmon resonance within the nanoscale. Usually, the CL detection system is combined with a high resolution scanning electron microscope (SEM). The fabricated plasmonic nanostructure is directly excited by the electron beam, and detected by an ultra-sensitive spectrometer and photodetector. Under the high energy electron stimulation, all of the plasmon resonances of the metallic nanostructure can be excited. Because of the high spatial resolution of the SEM, the detected CL can be used to analyze the details of plasmon resonance modes. In this review, we first briefly introduced the physical mechanism for the CL generation, and then discussed the CL emission of single plasmonic nanostructures such as different nanowires, nanoantennas, nanodisks and nanocavities, where the CL only describes the individual plasmon resonance modes. Second, the plasmon coupling behavior for the ensemble measurement was compared and analyzed for the CL detection. Finally, the CL detection with other advanced technologies were concluded. We believe with the development of the nanophotonics community, CL detection as a unique technique with ultra-high energy and spatial resolution has potential applications for the future plasmonic structure design and characterization.
      通信作者: 方哲宇, zhyfang@pku.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2017YFA0205700,2015CB932403,2017YFA0206000)、国家自然科学基金(批准号:61422501,11674012,11374023,61176120,61378059,61521004)、北京市自然科学基金(批准号:L140007)和教育部全国优秀博士学位论文专项基金(批准号:201420)资助的课题.
      Corresponding author: Fang Zhe-Yu, zhyfang@pku.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2017YFA0205700, 2015CB932403, 2017YFA0206000), the National Natural Science Foundation of China (Grant Nos. 61422501, 11674012, 11374023, 61176120, 61378059, 61521004), the Natural Science Foundation of Beijing, China(Grant No. L140007), and the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD) (Grant No. 201420).
    [1]

    Christen J, Grundmann M, Bimberg D 1991 J. Vac. Sci. Technol. B 9 2358

    [2]

    Schieber J, Krinsley D, Riciputi L 2000 Nature 406 981

    [3]

    Pratesi G, Lo Giudice A, Vishnevsky S, Manfredotti C, Cipriani C 2003 Am. Mineral 88 1778

    [4]

    Pennycook S J 2008 Scanning 30 287

    [5]

    Yacobi B, Holt D 1986 J. Appl. Phys. 59 R1

    [6]

    Shubina T, Ivanov S, Jmerik V, Solnyshkov D, Vekshin V, Kop'ev P, Vasson A, Leymarie J, Kavokin A, Amano H 2004 Phys. Rev. Lett. 92 117407

    [7]

    Niioka H, Furukawa T, Ichimiya M, Ashida M, Araki T, Hashimoto M 2011 Appl. Phys. Express 4 112402

    [8]

    Barnett W, Wise M, Jones E 1975 J. Microsc. 105 299

    [9]

    Vesseur E J R, Aizpurua J, Coenen T, Reyes-Coronado A, Batson P E, Polman A 2012 MRS Bull. 37 752

    [10]

    Vesseur E J R, de Waele R, Kuttge M, Polman A 2007 Nano Lett. 7 2843

    [11]

    Kuttge M, Garca de Abajo F J, Polman A 2009 Nano Lett. 10 1537

    [12]

    Hofmann C E, Vesseur E J R, Sweatlock L A, Lezec H J, Garca de Abajo F J, Polman A, Atwater H A 2007 Nano Lett. 7 3612

    [13]

    Barnard E S, Coenen T, Vesseur E J R, Polman A, Brongersma M L 2011 Nano Lett. 11 4265

    [14]

    Bischak C G, Hetherington C L, Wang Z, Precht J T, Kaz D M, Schlom D G, Ginsberg N S 2015 Nano Lett. 15 3383

    [15]

    Maity A, Maiti A, Das P, Senapati D, Kumar Chini T 2014 ACS Photon. 1 1290

    [16]

    Atre A C, Brenny B J, Coenen T, Garca-Etxarri A, Polman A, Dionne J A 2015 Nature Nanotech. 10 429

    [17]

    Fang Y, Verre R, Shao L, Nordlander P, Kall M 2016 Nano Lett. 16 5183

    [18]

    Zu S, Bao Y, Fang Z 2016 Nanoscale 8 3900

    [19]

    van Wijngaarden J 2005 Citeseer

    [20]

    Zhang W, Fang Z, Zhu X 2017 Chem. Rev. 117 5095

    [21]

    Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 10.1002/advs.201600430

    [22]

    Fang Z, Zhu X 2013 Adv. Mater. 25 3840

    [23]

    de Abajo F G 2010 Rev. Mod. Phys. 82 209

    [24]

    Li Z, Xiao Y, Gong Y, Wang Z, Kang Y, Zu S, Ajayan P M, Nordlander P, Fang Z 2015 ACS Nano 9 10158

    [25]

    Chaturvedi P, Hsu K H, Kumar A, Fung K H, Mabon J C, Fang N X 2009 ACS Nano 3 2965

    [26]

    Coenen T, Vesseur E J R, Polman A, Koenderink A F 2011 Nano Lett. 11 3779

    [27]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A 2003 Nature Mater. 2 229

    [28]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [29]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [30]

    Li Z, Li Y, Han T, Wang X, Yu Y, Tay B K, Liu Z, Fang Z 2017 ACS Nano 11 1165

    [31]

    Lal S, Link S, Halas N J 2007 Nature Photon. 1 641

    [32]

    Sorger V J, Oulton R F, Yao J, Bartal G, Zhang X 2009 Nano Lett. 9 3489

    [33]

    Bashevoy M, Jonsson F, MacDonald K, Chen Y, Zheludev N 2007 Opt. Express 15 11313

    [34]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [35]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T, Vahala K, Kimble H 2006 Nature 443 671

    [36]

    Reithmaier J, Sęk G, Lffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L, Kulakovskii V, Reinecke T, Forchel A 2004 Nature 432 197

    [37]

    Vahala K J 2003 Nature 424 839

    [38]

    Nelayah J, Kociak M, Stphan O, de Abajo F J G, Tenc M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzn L M, Colliex C 2007 Nature Phys. 3 348

    [39]

    Shuford K L, Ratner M A, Schatz G C 2005 J. Chem. Phys. 123 114713

    [40]

    Sherry L J, Jin R, Mirkin C A, Schatz G C, van Duyne R P 2006 Nano Lett. 6 2060

    [41]

    Das P, Chini T K, Pond J 2012 J. Phys. Chem. C 116 15610

    [42]

    Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188

    [43]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657

    [44]

    Wu Y, Nordlander P 2009 J. Phys. Chem. C 114 7302

    [45]

    Das P, Kedia A, Kumar P S, Large N, Chini T K 2013 Nanotechnology 24 405704

    [46]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [47]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [48]

    Frimmer M, Coenen T, Koenderink A F 2012 Phys. Rev. Lett. 108 077404

    [49]

    Day J K, Large N, Nordlander P, Halas N J 2015 Nano Lett. 15 1324

    [50]

    Segal E, Weissman A, Gachet D, Salomon A 2016 Nanoscale 8 15296

    [51]

    Coenen T, Vesseur E J R, Polman A 2011 Appl. Phys. Lett. 99 203904

    [52]

    Zhang X, Rich D H, Kobayashi J T, Kobayashi N P, Dapkus P D 1998 Appl. Phys. Lett. 73 1430

    [53]

    Coenen T, Vesseur E J R, Polman A 2012 ACS Nano 6 1742

    [54]

    Coenen T, Arango F B, Koenderink A F, Polman A 2014 Nat. Commun. 5 3250

    [55]

    Coenen T, Polman A 2014 ACS Nano 8 7350

    [56]

    Mohtashami A, Coenen T, Antoncecchi A, Polman A, Koenderink A F 2014 ACS Photon. 1 1134

    [57]

    Osorio C I, Coenen T, Brenny B J, Polman A, Koenderink A F 2015 ACS Photon. 3 147

    [58]

    Estrin Y, Rich D H, Kretinin A V, Shtrikman H 2013 Nano Lett. 13 1602

    [59]

    Leithuser G E 1904 Ann. Phys. 320 283

    [60]

    Losquin A, Zagonel L F, Myroshnychenko V, Rodrguez-Gonzlez B, Tenc M, Scarabelli L, Forstner J, Liz-Marzn L M, Garca de Abajo F J, Stphan O 2015 Nano Lett. 15 1229

    [61]

    Myroshnychenko V, Nelayah J, Adamo G, Geuquet N, Rodrguez-Fernandez J, Pastoriza-Santos I, MacDonald K F, Henrard L, Liz-Mrzan L M, Zheludev N I 2012 Nano Lett. 12 4172

    [62]

    Coenen T, Schoen D T, Mann S A, Rodriguez S R, Brenny B J, Polman A, Brongersma M L 2015 Nano Lett. 15 7666

    [63]

    Kawasaki N, Meuret S, Weil R, Loureno-Martins H, Stphan O, Kociak M 2016 ACS Photon. 3 1654

    [64]

    Knight M W, Liu L, Wang Y, Brown L, Mukherjee S, King N S, Everitt H O, Nordlander P, Halas N J 2012 Nano Lett. 12 6000

    [65]

    Knight M W, Coenen T, Yang Y, Brenny B J, Losurdo M, Brown A S, Everitt H O, Polman A 2015 ACS Nano 9 2049

    [66]

    Lee S M, Choi K C, Kim D H, Jeon D Y 2011 Opt. Express 19 13209

  • [1]

    Christen J, Grundmann M, Bimberg D 1991 J. Vac. Sci. Technol. B 9 2358

    [2]

    Schieber J, Krinsley D, Riciputi L 2000 Nature 406 981

    [3]

    Pratesi G, Lo Giudice A, Vishnevsky S, Manfredotti C, Cipriani C 2003 Am. Mineral 88 1778

    [4]

    Pennycook S J 2008 Scanning 30 287

    [5]

    Yacobi B, Holt D 1986 J. Appl. Phys. 59 R1

    [6]

    Shubina T, Ivanov S, Jmerik V, Solnyshkov D, Vekshin V, Kop'ev P, Vasson A, Leymarie J, Kavokin A, Amano H 2004 Phys. Rev. Lett. 92 117407

    [7]

    Niioka H, Furukawa T, Ichimiya M, Ashida M, Araki T, Hashimoto M 2011 Appl. Phys. Express 4 112402

    [8]

    Barnett W, Wise M, Jones E 1975 J. Microsc. 105 299

    [9]

    Vesseur E J R, Aizpurua J, Coenen T, Reyes-Coronado A, Batson P E, Polman A 2012 MRS Bull. 37 752

    [10]

    Vesseur E J R, de Waele R, Kuttge M, Polman A 2007 Nano Lett. 7 2843

    [11]

    Kuttge M, Garca de Abajo F J, Polman A 2009 Nano Lett. 10 1537

    [12]

    Hofmann C E, Vesseur E J R, Sweatlock L A, Lezec H J, Garca de Abajo F J, Polman A, Atwater H A 2007 Nano Lett. 7 3612

    [13]

    Barnard E S, Coenen T, Vesseur E J R, Polman A, Brongersma M L 2011 Nano Lett. 11 4265

    [14]

    Bischak C G, Hetherington C L, Wang Z, Precht J T, Kaz D M, Schlom D G, Ginsberg N S 2015 Nano Lett. 15 3383

    [15]

    Maity A, Maiti A, Das P, Senapati D, Kumar Chini T 2014 ACS Photon. 1 1290

    [16]

    Atre A C, Brenny B J, Coenen T, Garca-Etxarri A, Polman A, Dionne J A 2015 Nature Nanotech. 10 429

    [17]

    Fang Y, Verre R, Shao L, Nordlander P, Kall M 2016 Nano Lett. 16 5183

    [18]

    Zu S, Bao Y, Fang Z 2016 Nanoscale 8 3900

    [19]

    van Wijngaarden J 2005 Citeseer

    [20]

    Zhang W, Fang Z, Zhu X 2017 Chem. Rev. 117 5095

    [21]

    Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 10.1002/advs.201600430

    [22]

    Fang Z, Zhu X 2013 Adv. Mater. 25 3840

    [23]

    de Abajo F G 2010 Rev. Mod. Phys. 82 209

    [24]

    Li Z, Xiao Y, Gong Y, Wang Z, Kang Y, Zu S, Ajayan P M, Nordlander P, Fang Z 2015 ACS Nano 9 10158

    [25]

    Chaturvedi P, Hsu K H, Kumar A, Fung K H, Mabon J C, Fang N X 2009 ACS Nano 3 2965

    [26]

    Coenen T, Vesseur E J R, Polman A, Koenderink A F 2011 Nano Lett. 11 3779

    [27]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A 2003 Nature Mater. 2 229

    [28]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629

    [29]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [30]

    Li Z, Li Y, Han T, Wang X, Yu Y, Tay B K, Liu Z, Fang Z 2017 ACS Nano 11 1165

    [31]

    Lal S, Link S, Halas N J 2007 Nature Photon. 1 641

    [32]

    Sorger V J, Oulton R F, Yao J, Bartal G, Zhang X 2009 Nano Lett. 9 3489

    [33]

    Bashevoy M, Jonsson F, MacDonald K, Chen Y, Zheludev N 2007 Opt. Express 15 11313

    [34]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [35]

    Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T, Vahala K, Kimble H 2006 Nature 443 671

    [36]

    Reithmaier J, Sęk G, Lffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L, Kulakovskii V, Reinecke T, Forchel A 2004 Nature 432 197

    [37]

    Vahala K J 2003 Nature 424 839

    [38]

    Nelayah J, Kociak M, Stphan O, de Abajo F J G, Tenc M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzn L M, Colliex C 2007 Nature Phys. 3 348

    [39]

    Shuford K L, Ratner M A, Schatz G C 2005 J. Chem. Phys. 123 114713

    [40]

    Sherry L J, Jin R, Mirkin C A, Schatz G C, van Duyne R P 2006 Nano Lett. 6 2060

    [41]

    Das P, Chini T K, Pond J 2012 J. Phys. Chem. C 116 15610

    [42]

    Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188

    [43]

    Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657

    [44]

    Wu Y, Nordlander P 2009 J. Phys. Chem. C 114 7302

    [45]

    Das P, Kedia A, Kumar P S, Large N, Chini T K 2013 Nanotechnology 24 405704

    [46]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [47]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [48]

    Frimmer M, Coenen T, Koenderink A F 2012 Phys. Rev. Lett. 108 077404

    [49]

    Day J K, Large N, Nordlander P, Halas N J 2015 Nano Lett. 15 1324

    [50]

    Segal E, Weissman A, Gachet D, Salomon A 2016 Nanoscale 8 15296

    [51]

    Coenen T, Vesseur E J R, Polman A 2011 Appl. Phys. Lett. 99 203904

    [52]

    Zhang X, Rich D H, Kobayashi J T, Kobayashi N P, Dapkus P D 1998 Appl. Phys. Lett. 73 1430

    [53]

    Coenen T, Vesseur E J R, Polman A 2012 ACS Nano 6 1742

    [54]

    Coenen T, Arango F B, Koenderink A F, Polman A 2014 Nat. Commun. 5 3250

    [55]

    Coenen T, Polman A 2014 ACS Nano 8 7350

    [56]

    Mohtashami A, Coenen T, Antoncecchi A, Polman A, Koenderink A F 2014 ACS Photon. 1 1134

    [57]

    Osorio C I, Coenen T, Brenny B J, Polman A, Koenderink A F 2015 ACS Photon. 3 147

    [58]

    Estrin Y, Rich D H, Kretinin A V, Shtrikman H 2013 Nano Lett. 13 1602

    [59]

    Leithuser G E 1904 Ann. Phys. 320 283

    [60]

    Losquin A, Zagonel L F, Myroshnychenko V, Rodrguez-Gonzlez B, Tenc M, Scarabelli L, Forstner J, Liz-Marzn L M, Garca de Abajo F J, Stphan O 2015 Nano Lett. 15 1229

    [61]

    Myroshnychenko V, Nelayah J, Adamo G, Geuquet N, Rodrguez-Fernandez J, Pastoriza-Santos I, MacDonald K F, Henrard L, Liz-Mrzan L M, Zheludev N I 2012 Nano Lett. 12 4172

    [62]

    Coenen T, Schoen D T, Mann S A, Rodriguez S R, Brenny B J, Polman A, Brongersma M L 2015 Nano Lett. 15 7666

    [63]

    Kawasaki N, Meuret S, Weil R, Loureno-Martins H, Stphan O, Kociak M 2016 ACS Photon. 3 1654

    [64]

    Knight M W, Liu L, Wang Y, Brown L, Mukherjee S, King N S, Everitt H O, Nordlander P, Halas N J 2012 Nano Lett. 12 6000

    [65]

    Knight M W, Coenen T, Yang Y, Brenny B J, Losurdo M, Brown A S, Everitt H O, Polman A 2015 ACS Nano 9 2049

    [66]

    Lee S M, Choi K C, Kim D H, Jeon D Y 2011 Opt. Express 19 13209

  • [1] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合.  , 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型.  , 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计.  , 2022, 71(3): 038801. doi: 10.7498/aps.71.20211585
    [5] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计.  , 2021, (): . doi: 10.7498/aps.70.20211585
    [6] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [7] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用.  , 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [8] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控.  , 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [9] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析.  , 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [10] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究.  , 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [11] 李盼. 表面等离激元纳米聚焦研究进展.  , 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [12] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗.  , 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [13] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展.  , 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [14] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器.  , 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [15] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦.  , 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [16] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦.  , 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究.  , 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究.  , 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [19] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响.  , 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [20] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析.  , 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
计量
  • 文章访问数:  8670
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-05-02
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map