-
表面等离激元以其独特的光学性质广泛应用于纳米尺度的局域电磁场增强、超高分辨成像及微弱光电探测.阴极荧光是电子与物质相互作用而产生的光学响应,利用电子束激发金属纳米结构能够实现局域等离激元共振,并在亚波长尺度实现对共振模式的调控,具有超高空间分辨的成像特点.阴极荧光探测通常结合扫描电子显微镜或透射电子显微镜而实现,目前已被应用于表面等离激元的探测及共振模式的分析.本文从阴极荧光物理机理出发,综述了单一金属纳米结构和金属耦合结构的等离激元共振模式阴极荧光研究进展,并总结了阴极荧光与角分辨、时间分辨以及电子能量损失谱等关键技术相结合的应用,进一步分析了其面临的关键问题,最后展望了阴极荧光等离激元研究方向.Surface plasmons as the collective electrons oscillation at the interface of metal and dielectric materials, have induced tremendous applications for the nanoscale light focusing, waveguiding, coupling, and photodetection. As the development of the modern technology, cathodoluminescence (CL) has been successfully applied to describe the plasmon resonance within the nanoscale. Usually, the CL detection system is combined with a high resolution scanning electron microscope (SEM). The fabricated plasmonic nanostructure is directly excited by the electron beam, and detected by an ultra-sensitive spectrometer and photodetector. Under the high energy electron stimulation, all of the plasmon resonances of the metallic nanostructure can be excited. Because of the high spatial resolution of the SEM, the detected CL can be used to analyze the details of plasmon resonance modes. In this review, we first briefly introduced the physical mechanism for the CL generation, and then discussed the CL emission of single plasmonic nanostructures such as different nanowires, nanoantennas, nanodisks and nanocavities, where the CL only describes the individual plasmon resonance modes. Second, the plasmon coupling behavior for the ensemble measurement was compared and analyzed for the CL detection. Finally, the CL detection with other advanced technologies were concluded. We believe with the development of the nanophotonics community, CL detection as a unique technique with ultra-high energy and spatial resolution has potential applications for the future plasmonic structure design and characterization.
-
Keywords:
- cathodoluminescence /
- surface plasmon /
- subwavelength /
- metallic nanostructures
[1] Christen J, Grundmann M, Bimberg D 1991 J. Vac. Sci. Technol. B 9 2358
[2] Schieber J, Krinsley D, Riciputi L 2000 Nature 406 981
[3] Pratesi G, Lo Giudice A, Vishnevsky S, Manfredotti C, Cipriani C 2003 Am. Mineral 88 1778
[4] Pennycook S J 2008 Scanning 30 287
[5] Yacobi B, Holt D 1986 J. Appl. Phys. 59 R1
[6] Shubina T, Ivanov S, Jmerik V, Solnyshkov D, Vekshin V, Kop'ev P, Vasson A, Leymarie J, Kavokin A, Amano H 2004 Phys. Rev. Lett. 92 117407
[7] Niioka H, Furukawa T, Ichimiya M, Ashida M, Araki T, Hashimoto M 2011 Appl. Phys. Express 4 112402
[8] Barnett W, Wise M, Jones E 1975 J. Microsc. 105 299
[9] Vesseur E J R, Aizpurua J, Coenen T, Reyes-Coronado A, Batson P E, Polman A 2012 MRS Bull. 37 752
[10] Vesseur E J R, de Waele R, Kuttge M, Polman A 2007 Nano Lett. 7 2843
[11] Kuttge M, Garca de Abajo F J, Polman A 2009 Nano Lett. 10 1537
[12] Hofmann C E, Vesseur E J R, Sweatlock L A, Lezec H J, Garca de Abajo F J, Polman A, Atwater H A 2007 Nano Lett. 7 3612
[13] Barnard E S, Coenen T, Vesseur E J R, Polman A, Brongersma M L 2011 Nano Lett. 11 4265
[14] Bischak C G, Hetherington C L, Wang Z, Precht J T, Kaz D M, Schlom D G, Ginsberg N S 2015 Nano Lett. 15 3383
[15] Maity A, Maiti A, Das P, Senapati D, Kumar Chini T 2014 ACS Photon. 1 1290
[16] Atre A C, Brenny B J, Coenen T, Garca-Etxarri A, Polman A, Dionne J A 2015 Nature Nanotech. 10 429
[17] Fang Y, Verre R, Shao L, Nordlander P, Kall M 2016 Nano Lett. 16 5183
[18] Zu S, Bao Y, Fang Z 2016 Nanoscale 8 3900
[19] van Wijngaarden J 2005 Citeseer
[20] Zhang W, Fang Z, Zhu X 2017 Chem. Rev. 117 5095
[21] Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 10.1002/advs.201600430
[22] Fang Z, Zhu X 2013 Adv. Mater. 25 3840
[23] de Abajo F G 2010 Rev. Mod. Phys. 82 209
[24] Li Z, Xiao Y, Gong Y, Wang Z, Kang Y, Zu S, Ajayan P M, Nordlander P, Fang Z 2015 ACS Nano 9 10158
[25] Chaturvedi P, Hsu K H, Kumar A, Fung K H, Mabon J C, Fang N X 2009 ACS Nano 3 2965
[26] Coenen T, Vesseur E J R, Polman A, Koenderink A F 2011 Nano Lett. 11 3779
[27] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A 2003 Nature Mater. 2 229
[28] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629
[29] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508
[30] Li Z, Li Y, Han T, Wang X, Yu Y, Tay B K, Liu Z, Fang Z 2017 ACS Nano 11 1165
[31] Lal S, Link S, Halas N J 2007 Nature Photon. 1 641
[32] Sorger V J, Oulton R F, Yao J, Bartal G, Zhang X 2009 Nano Lett. 9 3489
[33] Bashevoy M, Jonsson F, MacDonald K, Chen Y, Zheludev N 2007 Opt. Express 15 11313
[34] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[35] Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T, Vahala K, Kimble H 2006 Nature 443 671
[36] Reithmaier J, Sęk G, Lffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L, Kulakovskii V, Reinecke T, Forchel A 2004 Nature 432 197
[37] Vahala K J 2003 Nature 424 839
[38] Nelayah J, Kociak M, Stphan O, de Abajo F J G, Tenc M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzn L M, Colliex C 2007 Nature Phys. 3 348
[39] Shuford K L, Ratner M A, Schatz G C 2005 J. Chem. Phys. 123 114713
[40] Sherry L J, Jin R, Mirkin C A, Schatz G C, van Duyne R P 2006 Nano Lett. 6 2060
[41] Das P, Chini T K, Pond J 2012 J. Phys. Chem. C 116 15610
[42] Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188
[43] Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657
[44] Wu Y, Nordlander P 2009 J. Phys. Chem. C 114 7302
[45] Das P, Kedia A, Kumar P S, Large N, Chini T K 2013 Nanotechnology 24 405704
[46] Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527
[47] Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058
[48] Frimmer M, Coenen T, Koenderink A F 2012 Phys. Rev. Lett. 108 077404
[49] Day J K, Large N, Nordlander P, Halas N J 2015 Nano Lett. 15 1324
[50] Segal E, Weissman A, Gachet D, Salomon A 2016 Nanoscale 8 15296
[51] Coenen T, Vesseur E J R, Polman A 2011 Appl. Phys. Lett. 99 203904
[52] Zhang X, Rich D H, Kobayashi J T, Kobayashi N P, Dapkus P D 1998 Appl. Phys. Lett. 73 1430
[53] Coenen T, Vesseur E J R, Polman A 2012 ACS Nano 6 1742
[54] Coenen T, Arango F B, Koenderink A F, Polman A 2014 Nat. Commun. 5 3250
[55] Coenen T, Polman A 2014 ACS Nano 8 7350
[56] Mohtashami A, Coenen T, Antoncecchi A, Polman A, Koenderink A F 2014 ACS Photon. 1 1134
[57] Osorio C I, Coenen T, Brenny B J, Polman A, Koenderink A F 2015 ACS Photon. 3 147
[58] Estrin Y, Rich D H, Kretinin A V, Shtrikman H 2013 Nano Lett. 13 1602
[59] Leithuser G E 1904 Ann. Phys. 320 283
[60] Losquin A, Zagonel L F, Myroshnychenko V, Rodrguez-Gonzlez B, Tenc M, Scarabelli L, Forstner J, Liz-Marzn L M, Garca de Abajo F J, Stphan O 2015 Nano Lett. 15 1229
[61] Myroshnychenko V, Nelayah J, Adamo G, Geuquet N, Rodrguez-Fernandez J, Pastoriza-Santos I, MacDonald K F, Henrard L, Liz-Mrzan L M, Zheludev N I 2012 Nano Lett. 12 4172
[62] Coenen T, Schoen D T, Mann S A, Rodriguez S R, Brenny B J, Polman A, Brongersma M L 2015 Nano Lett. 15 7666
[63] Kawasaki N, Meuret S, Weil R, Loureno-Martins H, Stphan O, Kociak M 2016 ACS Photon. 3 1654
[64] Knight M W, Liu L, Wang Y, Brown L, Mukherjee S, King N S, Everitt H O, Nordlander P, Halas N J 2012 Nano Lett. 12 6000
[65] Knight M W, Coenen T, Yang Y, Brenny B J, Losurdo M, Brown A S, Everitt H O, Polman A 2015 ACS Nano 9 2049
[66] Lee S M, Choi K C, Kim D H, Jeon D Y 2011 Opt. Express 19 13209
-
[1] Christen J, Grundmann M, Bimberg D 1991 J. Vac. Sci. Technol. B 9 2358
[2] Schieber J, Krinsley D, Riciputi L 2000 Nature 406 981
[3] Pratesi G, Lo Giudice A, Vishnevsky S, Manfredotti C, Cipriani C 2003 Am. Mineral 88 1778
[4] Pennycook S J 2008 Scanning 30 287
[5] Yacobi B, Holt D 1986 J. Appl. Phys. 59 R1
[6] Shubina T, Ivanov S, Jmerik V, Solnyshkov D, Vekshin V, Kop'ev P, Vasson A, Leymarie J, Kavokin A, Amano H 2004 Phys. Rev. Lett. 92 117407
[7] Niioka H, Furukawa T, Ichimiya M, Ashida M, Araki T, Hashimoto M 2011 Appl. Phys. Express 4 112402
[8] Barnett W, Wise M, Jones E 1975 J. Microsc. 105 299
[9] Vesseur E J R, Aizpurua J, Coenen T, Reyes-Coronado A, Batson P E, Polman A 2012 MRS Bull. 37 752
[10] Vesseur E J R, de Waele R, Kuttge M, Polman A 2007 Nano Lett. 7 2843
[11] Kuttge M, Garca de Abajo F J, Polman A 2009 Nano Lett. 10 1537
[12] Hofmann C E, Vesseur E J R, Sweatlock L A, Lezec H J, Garca de Abajo F J, Polman A, Atwater H A 2007 Nano Lett. 7 3612
[13] Barnard E S, Coenen T, Vesseur E J R, Polman A, Brongersma M L 2011 Nano Lett. 11 4265
[14] Bischak C G, Hetherington C L, Wang Z, Precht J T, Kaz D M, Schlom D G, Ginsberg N S 2015 Nano Lett. 15 3383
[15] Maity A, Maiti A, Das P, Senapati D, Kumar Chini T 2014 ACS Photon. 1 1290
[16] Atre A C, Brenny B J, Coenen T, Garca-Etxarri A, Polman A, Dionne J A 2015 Nature Nanotech. 10 429
[17] Fang Y, Verre R, Shao L, Nordlander P, Kall M 2016 Nano Lett. 16 5183
[18] Zu S, Bao Y, Fang Z 2016 Nanoscale 8 3900
[19] van Wijngaarden J 2005 Citeseer
[20] Zhang W, Fang Z, Zhu X 2017 Chem. Rev. 117 5095
[21] Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 10.1002/advs.201600430
[22] Fang Z, Zhu X 2013 Adv. Mater. 25 3840
[23] de Abajo F G 2010 Rev. Mod. Phys. 82 209
[24] Li Z, Xiao Y, Gong Y, Wang Z, Kang Y, Zu S, Ajayan P M, Nordlander P, Fang Z 2015 ACS Nano 9 10158
[25] Chaturvedi P, Hsu K H, Kumar A, Fung K H, Mabon J C, Fang N X 2009 ACS Nano 3 2965
[26] Coenen T, Vesseur E J R, Polman A, Koenderink A F 2011 Nano Lett. 11 3779
[27] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A 2003 Nature Mater. 2 229
[28] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629
[29] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508
[30] Li Z, Li Y, Han T, Wang X, Yu Y, Tay B K, Liu Z, Fang Z 2017 ACS Nano 11 1165
[31] Lal S, Link S, Halas N J 2007 Nature Photon. 1 641
[32] Sorger V J, Oulton R F, Yao J, Bartal G, Zhang X 2009 Nano Lett. 9 3489
[33] Bashevoy M, Jonsson F, MacDonald K, Chen Y, Zheludev N 2007 Opt. Express 15 11313
[34] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[35] Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T, Vahala K, Kimble H 2006 Nature 443 671
[36] Reithmaier J, Sęk G, Lffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L, Kulakovskii V, Reinecke T, Forchel A 2004 Nature 432 197
[37] Vahala K J 2003 Nature 424 839
[38] Nelayah J, Kociak M, Stphan O, de Abajo F J G, Tenc M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzn L M, Colliex C 2007 Nature Phys. 3 348
[39] Shuford K L, Ratner M A, Schatz G C 2005 J. Chem. Phys. 123 114713
[40] Sherry L J, Jin R, Mirkin C A, Schatz G C, van Duyne R P 2006 Nano Lett. 6 2060
[41] Das P, Chini T K, Pond J 2012 J. Phys. Chem. C 116 15610
[42] Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188
[43] Zhang S, Bao K, Halas N J, Xu H, Nordlander P 2011 Nano Lett. 11 1657
[44] Wu Y, Nordlander P 2009 J. Phys. Chem. C 114 7302
[45] Das P, Kedia A, Kumar P S, Large N, Chini T K 2013 Nanotechnology 24 405704
[46] Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527
[47] Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058
[48] Frimmer M, Coenen T, Koenderink A F 2012 Phys. Rev. Lett. 108 077404
[49] Day J K, Large N, Nordlander P, Halas N J 2015 Nano Lett. 15 1324
[50] Segal E, Weissman A, Gachet D, Salomon A 2016 Nanoscale 8 15296
[51] Coenen T, Vesseur E J R, Polman A 2011 Appl. Phys. Lett. 99 203904
[52] Zhang X, Rich D H, Kobayashi J T, Kobayashi N P, Dapkus P D 1998 Appl. Phys. Lett. 73 1430
[53] Coenen T, Vesseur E J R, Polman A 2012 ACS Nano 6 1742
[54] Coenen T, Arango F B, Koenderink A F, Polman A 2014 Nat. Commun. 5 3250
[55] Coenen T, Polman A 2014 ACS Nano 8 7350
[56] Mohtashami A, Coenen T, Antoncecchi A, Polman A, Koenderink A F 2014 ACS Photon. 1 1134
[57] Osorio C I, Coenen T, Brenny B J, Polman A, Koenderink A F 2015 ACS Photon. 3 147
[58] Estrin Y, Rich D H, Kretinin A V, Shtrikman H 2013 Nano Lett. 13 1602
[59] Leithuser G E 1904 Ann. Phys. 320 283
[60] Losquin A, Zagonel L F, Myroshnychenko V, Rodrguez-Gonzlez B, Tenc M, Scarabelli L, Forstner J, Liz-Marzn L M, Garca de Abajo F J, Stphan O 2015 Nano Lett. 15 1229
[61] Myroshnychenko V, Nelayah J, Adamo G, Geuquet N, Rodrguez-Fernandez J, Pastoriza-Santos I, MacDonald K F, Henrard L, Liz-Mrzan L M, Zheludev N I 2012 Nano Lett. 12 4172
[62] Coenen T, Schoen D T, Mann S A, Rodriguez S R, Brenny B J, Polman A, Brongersma M L 2015 Nano Lett. 15 7666
[63] Kawasaki N, Meuret S, Weil R, Loureno-Martins H, Stphan O, Kociak M 2016 ACS Photon. 3 1654
[64] Knight M W, Liu L, Wang Y, Brown L, Mukherjee S, King N S, Everitt H O, Nordlander P, Halas N J 2012 Nano Lett. 12 6000
[65] Knight M W, Coenen T, Yang Y, Brenny B J, Losurdo M, Brown A S, Everitt H O, Polman A 2015 ACS Nano 9 2049
[66] Lee S M, Choi K C, Kim D H, Jeon D Y 2011 Opt. Express 19 13209
计量
- 文章访问数: 8670
- PDF下载量: 355
- 被引次数: 0