-
运用密度泛函B3LYP/6-31G+(d)方法对gg构象的低聚壳聚糖进行了结构优化、频率计算和电子结构,并用更高精度的WB97XD/6-311+G(d,p)方法计算了平均结合能及零点能校正,分析了热力学性质. 结果表明,由于低聚壳聚糖中的氢键作用,使其形成螺旋结构;聚合度的增加,使平均结合能随之下降,结构的稳定性增强;在降解过程中,均为放热反应,验证了利用降温来提高降解产率的实验的可行性;此外,聚合度的增加,使能隙减小且快速收敛于聚合度为7的6.99 eV,稳定的反应活性与实验相符;HOMO、LUMO的电子密度分布表明,化学活性集中在C2位的氨基、C6位的羟基以及链的两端位置. 该结果对低聚壳聚糖模型的建立和低聚壳聚糖降解过程、活性位置以及物理化学属性的尺寸依赖等现象的研究有着指导意义.By using the density functional theory with B3LYP/6-31G+(d) we compute the optimization, vibration frequencies, electron structures of gg conformation of oligochitosans, and study the average binding energies and the zero-point energy corrections using WB97XD method. We also analyze the thermodynamic properties of oligochitosans. Results show that the hydrogen-bond makes the oligochitosan become spiral; average binding energies tend to decrease and stability tends to improve with the increasing degree of polymerization (DP); the water degradation of oligochitosan is an exothermic reaction, so it is feasible to reduce the temperature to improve the degradation yield in experiment; in addition, the energy gap of oligochitosan quickly converges to 6.99 eV with the increase of DP; furthermore, the value of DP7 oligochitosan is in accordance with the convergence value. The HOMO and LUMO of oligochitosan show that chemical activity is mainly distributed in C2 amino, C6 hydroxyl groups, and both ends of oligochitosan chain. These results have instructive significance on the modeling, and can provide a theoritical basis for degradation process, chemical activity position, and size-dependence in physical chemical properties of oligochitosan.
-
Keywords:
- oligochitosan /
- geometric structure /
- size effect /
- electronic property
[1] Wang A Q 2008 Chitin Chemistry (Beijing: Science Press) p127-128 (in Chinese) [王爱勤2008 甲壳素化学 (北京: 科学出版社) 第127–128 页]
[2] Lu J J, Feng M, Zhan H B 2013 Acta Phys. Sin. 62 014204 (in Chinese) [陆晶晶, 冯苗, 詹红兵2013 62 014204]
[3] Jumma M, Muller B W 1999 Int. J. Pharm. 183 175
[4] Kong M, Chen X G, Xing K, Park H J 2010 Int. J. Food Microbiol. 144 51
[5] Wang S L, Wu P C, Liang T W 2009Carbohydr. Res. 334 979
[6] Dou J L, Ma P, Xiong C N, Tan C Y, Du Y G 2011 Carbohydr. Polym 86 19
[7] Xu J G, Zhao X M, Han X W, Du Y G 2007 Pestic. Biochem. Phys. 87 220
[8] Yin X Q, Lin Q, Zhang Q 2002Chin. J. Appl. Chem. 19 4 (in Chinese) [尹学琼, 林强, 张岐2002 应用化学19 4]
[9] Duy N N, Phu D V, Anh N T, Hien N Q 2011 Radiat. Phys. Chem. 80 848
[10] Du Y J, Zhao Y Q, Dai S C, Bao Y 2009 Innov. Food Sci. Emerg. 10 103
[11] Horouitz S T, Roseman S, Blumenthal H J 1957 J. Am. Chem. Soc. 79 5046
[12] Zhang W Q, Chai P H, Xia W, Zhang Y J 2000 J. East China Univ. Sci. Thechnol. 26 425 (in Chinese) [张文清, 柴平海, 夏玮, 张亚军2000 华东理工大学学报26 425]
[13] Liu Q H, Kong Q Y, Liu H 2006 Acta Acad. Med. Xuzhou 26 290 (in Chinese)[刘清华, 孔庆兖, 柳红2006 徐州医学院学报26 290]
[14] Schnupf U, Momany F A 2012 Comput. Theor. Chem. 999 138
[15] Becke A D 1988 Phys. Rev. A 38 3098
[16] Lee C, Yang W, Parr R G 1998 Phys. Rev. B 37 785
[17] Grimme S 2006 J. Comput. Chem. 27 1787
[18] Chai J D, Head-Gordon M 2008 J. Chem. Phys. 128 84
[19] Chai J D, Head-Gordon M 2008 Phys. Chem. Chem. Phys. 10 6615
[20] Frisch M J, Trucks G W, Schlegel H B 2009 Gaussian 09, Revision C. 01, Wallingford CT: Gaussian, Inc.
[21] Gao Z H, Di M W 2008 Biomass and Its Applications (Beijing: Chemical Industry Press) p103-105 (in Chinese)[高振华, 邸明伟2008 生物质材料与应用(北京: 化学工业出版社) 第103–105 页]
[22] Li X, Yang M S, Ye Z P, Chen L, Xu C, Chu X X 2013 Acta Phys. Sin. 15 156103 (in Chinese) [李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥2013 15 156103]
[23] Umemura M, Yuguchi Y, Hirotsu T 2004 J. Phys. Chem. A 108 7063
[24] Li W F, Qin M, Tie Z X, Wang W 2011 Phys. Rev. E 84 041933
[25] Li X, Yu S, Yang M S, Xu C, Wang Y, Chen L 2014 Physica E 57 63
[26] Yang M S, Li X, Ye Z P, Chen L, Xu C, Chu X X 2013 Acta Phys. Sin. 62 236101 (in Chinese) [羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥2013 62 236101]
[27] Xu C, Cao J, Gao C Y 2006 Acta Phys. Sin. 55 4221 (in Chinese)[徐灿, 曹娟, 高晨阳2006 55 4221]
[28] Zhou G R, Teng X Y, Wang Y, Geng H R, Hur B Y 2012 Acta Phys. Sin. 61 066101 (in Chinese)[周国荣, 藤新营, 王艳, 耿浩然, 徐甫宁2012 61 066101]
[29] Xu C, Cao J, Zhu L F, Gao C Y 2006 Acta Phys. Chim. Sin. 22 451 (in Chinese)[徐灿, 曹娟, 朱莉芳, 高晨阳2006 物理化学学报22 451]
[30] Roberts C, Johnston R L 2001 Phys. Chem. Chem. Phys. 3 5024
[31] Puente E de la, Aguado A, Ayucla A, Lopez J M 1997 Phys. Rev. B 56 7607
[32] Liu J J, Zhou Y P, Li S L 2009 Physical Chemistry (Beijing: Higher Education Press) p61-63 (in Chinese) [刘俊吉, 周亚平, 李松林2009 物理化学第五版上册(北京: 高等教育出版社) 第61–63 页]
[33] Jia Z S, Shen D F 2002 Carbohydr. Polym 49 393
[34] Jin R, Shen X H 2012 Acta Phys. Sin. 61 093103 (in Chinese)[金蓉, 谌晓洪2012 61 093103]
[35] Xu C, Zhang X F, Chen L, Cao J 2008 J. Mol. Struc-Theochem. 851 35
[36] Chen L, Xu C, Zhang X F, Zhou T 2009 Physica E 41 852
[37] Chen L, Xu C, Zhang X F 2008 J. Mol. Struc-Theochem. 863 55
-
[1] Wang A Q 2008 Chitin Chemistry (Beijing: Science Press) p127-128 (in Chinese) [王爱勤2008 甲壳素化学 (北京: 科学出版社) 第127–128 页]
[2] Lu J J, Feng M, Zhan H B 2013 Acta Phys. Sin. 62 014204 (in Chinese) [陆晶晶, 冯苗, 詹红兵2013 62 014204]
[3] Jumma M, Muller B W 1999 Int. J. Pharm. 183 175
[4] Kong M, Chen X G, Xing K, Park H J 2010 Int. J. Food Microbiol. 144 51
[5] Wang S L, Wu P C, Liang T W 2009Carbohydr. Res. 334 979
[6] Dou J L, Ma P, Xiong C N, Tan C Y, Du Y G 2011 Carbohydr. Polym 86 19
[7] Xu J G, Zhao X M, Han X W, Du Y G 2007 Pestic. Biochem. Phys. 87 220
[8] Yin X Q, Lin Q, Zhang Q 2002Chin. J. Appl. Chem. 19 4 (in Chinese) [尹学琼, 林强, 张岐2002 应用化学19 4]
[9] Duy N N, Phu D V, Anh N T, Hien N Q 2011 Radiat. Phys. Chem. 80 848
[10] Du Y J, Zhao Y Q, Dai S C, Bao Y 2009 Innov. Food Sci. Emerg. 10 103
[11] Horouitz S T, Roseman S, Blumenthal H J 1957 J. Am. Chem. Soc. 79 5046
[12] Zhang W Q, Chai P H, Xia W, Zhang Y J 2000 J. East China Univ. Sci. Thechnol. 26 425 (in Chinese) [张文清, 柴平海, 夏玮, 张亚军2000 华东理工大学学报26 425]
[13] Liu Q H, Kong Q Y, Liu H 2006 Acta Acad. Med. Xuzhou 26 290 (in Chinese)[刘清华, 孔庆兖, 柳红2006 徐州医学院学报26 290]
[14] Schnupf U, Momany F A 2012 Comput. Theor. Chem. 999 138
[15] Becke A D 1988 Phys. Rev. A 38 3098
[16] Lee C, Yang W, Parr R G 1998 Phys. Rev. B 37 785
[17] Grimme S 2006 J. Comput. Chem. 27 1787
[18] Chai J D, Head-Gordon M 2008 J. Chem. Phys. 128 84
[19] Chai J D, Head-Gordon M 2008 Phys. Chem. Chem. Phys. 10 6615
[20] Frisch M J, Trucks G W, Schlegel H B 2009 Gaussian 09, Revision C. 01, Wallingford CT: Gaussian, Inc.
[21] Gao Z H, Di M W 2008 Biomass and Its Applications (Beijing: Chemical Industry Press) p103-105 (in Chinese)[高振华, 邸明伟2008 生物质材料与应用(北京: 化学工业出版社) 第103–105 页]
[22] Li X, Yang M S, Ye Z P, Chen L, Xu C, Chu X X 2013 Acta Phys. Sin. 15 156103 (in Chinese) [李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥2013 15 156103]
[23] Umemura M, Yuguchi Y, Hirotsu T 2004 J. Phys. Chem. A 108 7063
[24] Li W F, Qin M, Tie Z X, Wang W 2011 Phys. Rev. E 84 041933
[25] Li X, Yu S, Yang M S, Xu C, Wang Y, Chen L 2014 Physica E 57 63
[26] Yang M S, Li X, Ye Z P, Chen L, Xu C, Chu X X 2013 Acta Phys. Sin. 62 236101 (in Chinese) [羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥2013 62 236101]
[27] Xu C, Cao J, Gao C Y 2006 Acta Phys. Sin. 55 4221 (in Chinese)[徐灿, 曹娟, 高晨阳2006 55 4221]
[28] Zhou G R, Teng X Y, Wang Y, Geng H R, Hur B Y 2012 Acta Phys. Sin. 61 066101 (in Chinese)[周国荣, 藤新营, 王艳, 耿浩然, 徐甫宁2012 61 066101]
[29] Xu C, Cao J, Zhu L F, Gao C Y 2006 Acta Phys. Chim. Sin. 22 451 (in Chinese)[徐灿, 曹娟, 朱莉芳, 高晨阳2006 物理化学学报22 451]
[30] Roberts C, Johnston R L 2001 Phys. Chem. Chem. Phys. 3 5024
[31] Puente E de la, Aguado A, Ayucla A, Lopez J M 1997 Phys. Rev. B 56 7607
[32] Liu J J, Zhou Y P, Li S L 2009 Physical Chemistry (Beijing: Higher Education Press) p61-63 (in Chinese) [刘俊吉, 周亚平, 李松林2009 物理化学第五版上册(北京: 高等教育出版社) 第61–63 页]
[33] Jia Z S, Shen D F 2002 Carbohydr. Polym 49 393
[34] Jin R, Shen X H 2012 Acta Phys. Sin. 61 093103 (in Chinese)[金蓉, 谌晓洪2012 61 093103]
[35] Xu C, Zhang X F, Chen L, Cao J 2008 J. Mol. Struc-Theochem. 851 35
[36] Chen L, Xu C, Zhang X F, Zhou T 2009 Physica E 41 852
[37] Chen L, Xu C, Zhang X F 2008 J. Mol. Struc-Theochem. 863 55
计量
- 文章访问数: 7129
- PDF下载量: 1119
- 被引次数: 0