-
利用密度泛函理论TPSSh方法对B采用6-311+G(d), 对Y采用Lanl2dz相对论有效势基组, 研究了BnY (n=1–11)团簇的平均结合能、二阶能量差分、最高分子占据轨道和最低空轨道之间的能级间隙、极化率和第一静态超极化率等物理化学性质. 结果表明, 随着尺寸的增大, BnY (n=1–11)团簇的最低能量结构从平面逐步演变为立体结构. 随硼原子数n的增加, 团簇的平均结合能表明了较好的热力学稳定性, 有利于Y掺杂B团簇形成较大的块体材料.二阶能量差分表明基态B3Y, B5Y和B7Y团簇较相邻团簇稳定. 能隙表明了基态B3Y, B5Y, B7Y和B9Y的化学稳定性较高. 综合说明BnY (n=1–11)硼团簇中, 基态B3Y, B5Y和B7Y具有较好的稳定性. 极化率表明基态BnY团簇的电子结构随B原子的增加趋于紧凑, 第一静态超极化率表明基态B5Y, B4Y, B3Y和B6Y平面结构的团簇具有明显的非线性光学性质, 为寻找性能优异的非线性光学材料提供了一定的参考.
-
关键词:
- 密度泛函TPSSh方法 /
- BnY (n=1– /
- 11)团簇 /
- 几何结构 /
- 电子性质
The geometric structures, electronic properties, average binding energies, second-order energy differences and energy gaps of BnY (n=1-11) clusters are systematically studied using the density functional theory (DFT) TPSSh method with 6-311+G(d) basis set for B atoms and Lanl2dz relativistic effective core potential basis set for Y atom. It is found that with the size increasing, the lowest energy structures of BnY (n=1-11) clusters gradually evolve from planar shape to cubic structure. With the atoms of B increasing, the average binding energies of the ground state of BnY (n=1-11) clusters increase. The second-order energy differences and the energy gaps of the ground states of BnY (n=1-11) clusters show that B3Y, B5Y and B7Y clusters possess relatively high stabilities. The polarization and the first static hyperpolarizability studied show that the plane structures of B5Y, B4Y, B3Y and B6Y clusters have larger nonlinear optical properties.-
Keywords:
- TPSSh method (DFT) /
- BnY (n=1-11) clusters /
- geometric structure /
- electronic property /
[1] Wang G H 1994 Prog. Phys. 14 121 (in Chinese) [王广厚 1994 物理学进展 14 121]
[2] Lei X L, Wang Q L, Yan Y L, Zhao W J, Yang Z, Luo Y H 2007 Acta Phys. Sin. 56 4484 (in Chinese) [雷雪玲, 王清林, 闫玉丽, 赵文杰, 杨致, 罗友华 2007 56 4484]
[3] Mao H P, Yang L R, Wang H Y, Zhu Z H, Tang Y J 2005 Acta Phys. Sin. 54 5126 (in Chinese) [毛华平, 杨兰蓉, 王红艳, 朱正和, 唐永建 2005 54 5126]
[4] Boustani I 1997 Phys. Rev. B 55 16426
[5] Marques M A L, Botti S 2005 J. Chem. Phys. 123 014310
[6] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2005 Coord. Chem. Rev. 250 2811
[7] Sergeeva A P, Zubarev D Y, Zhai H J, Boldyrev A I, Wang L S 2008 J. Am. Chem. Soc. 130 7244
[8] Sergeeva A P, Averkiev B B, Zhai H J, Boldyrev A I, Wang L S 2011 J. Chem. Phys. 134 224304
[9] Johansson M P 2009 J. Phys. Chem. C 113 524
[10] Zubarev D Y, Boldyrev A I 2007 J. Comput. Chem. 28 251
[11] Cheng L J 2012 J. Chem. Phys. 136 104301
[12] Yuan Y, Cheng L J 2012 J. Chem. Phys. 137 044308
[13] Yan Q B, Sheng X L, Zheng Q R, Su G 2011 Sci. China G: Physics, Mechanics, Astronomy 41 29 (in Chinese) [闫清波, 胜献雷, 郑庆荣, 苏刚 2011 中国科学: 物理学 力学 天文学 41 29]
[14] Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phys. B 23 023102
[15] Zeng X B, Zhu X L, Li D H, Chen Z J, Ai Y W 2014 Acta Phys. Sin. 63 153101 (in Chinese) [曾小波, 朱晓玲, 李德华, 陈中钧, 艾应伟 2014 63 153101]
[16] Gu J B, Yang X D, Wang H Q, Li H F 2012 Chin. Phys. B 21 043102
[17] Liu Z F, Lei X L, Liu L R, Liu H Y, Zhu H J 2011 Chin. Phys. B 20 023101
[18] Liu L R, Lei X L, Chen H, Zhu H J 2009 J. At. Mol. Phys. 26 474 (in Chinese) [刘立仁, 雷雪玲, 陈杭, 祝恒江 2009 原子与分子 26 474]
[19] Li Q S, Jin Q 2004 Phys. Chem. A 108 855
[20] Li W L, Romanescu C, Galeev T R, Wang L S, Boldyrev A I 2011 J. Phys. Chem. A 115 10391
[21] Popov I A, Li W L, Piazza Z A, Boldyrev A I, Wang L S 2014 J. Phys. Chem. A ASAP (As Soon As Publishable)
[22] Ruan W, Xie A D, Yu X G, Wu D L 2012 Acta Phys. Sin. 61 043102 (in Chinese) [阮文, 谢安东, 余晓光, 伍冬兰 2012 61 043102]
[23] Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101
[24] Yan Y L, Zhao W J, Gao L Z, Hou W Z, Wang Y X 2008 J. At. Mol. Phys. 25 590 (in Chinese) [闫玉丽, 赵文杰, 高丽珍, 侯卫周, 王渊旭 2008 原子与分子 25 590]
[25] Liu X, Zhao G F, Guo L J, Jing Q, Luo Y H 2007 Phys. Rev. A 75 063201
[26] Huang H S, Wu L F, Zhao D Q, Wang X M, Huang X W, Li Y C 2011 J. At. Mol. Phys. 28 676 (in Chinese) [黄海深, 伍良福, 赵冬秋, 王小满, 黄晓伟, 李蕴才 2011 原子与分子 28 676]
[27] Tao J, Perdew J P, Staroverov V N, Scuseria G E 2003 Phys. Rev. Lett. 91 146401
[28] Li L F, Xu C, Cheng L J 2013 Comput. Theor. Chem. 1021 144
[29] Yuan Y, Cheng L J 2013 J. Chem. Phys. 138 024301
[30] Li L F, Cheng L J 2013 J. Chem. Phys. 138 094312
[31] Li L F, Xu C, Jin B K, Cheng L J 2013 J. Chem. Phys. 139 174310
[32] Frisch M J,Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, et al. 2009 Gaussian 09, Revision A. 02. (Wallingford: Gaussian, Inc.)
[33] Zhang X R, Gao C H, Wu L Q, Tang H S 2010 Acta Phys. Sin. 59 5429 (in Chinese) [张秀荣, 高从花, 吴礼清, 唐会帅 2010 59 5429]
[34] Ma F, Zhou Z J, Li Z R, Wu D, Li Y, Li Z S 2010 Chem. Phys. Lett. 488 182
-
[1] Wang G H 1994 Prog. Phys. 14 121 (in Chinese) [王广厚 1994 物理学进展 14 121]
[2] Lei X L, Wang Q L, Yan Y L, Zhao W J, Yang Z, Luo Y H 2007 Acta Phys. Sin. 56 4484 (in Chinese) [雷雪玲, 王清林, 闫玉丽, 赵文杰, 杨致, 罗友华 2007 56 4484]
[3] Mao H P, Yang L R, Wang H Y, Zhu Z H, Tang Y J 2005 Acta Phys. Sin. 54 5126 (in Chinese) [毛华平, 杨兰蓉, 王红艳, 朱正和, 唐永建 2005 54 5126]
[4] Boustani I 1997 Phys. Rev. B 55 16426
[5] Marques M A L, Botti S 2005 J. Chem. Phys. 123 014310
[6] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2005 Coord. Chem. Rev. 250 2811
[7] Sergeeva A P, Zubarev D Y, Zhai H J, Boldyrev A I, Wang L S 2008 J. Am. Chem. Soc. 130 7244
[8] Sergeeva A P, Averkiev B B, Zhai H J, Boldyrev A I, Wang L S 2011 J. Chem. Phys. 134 224304
[9] Johansson M P 2009 J. Phys. Chem. C 113 524
[10] Zubarev D Y, Boldyrev A I 2007 J. Comput. Chem. 28 251
[11] Cheng L J 2012 J. Chem. Phys. 136 104301
[12] Yuan Y, Cheng L J 2012 J. Chem. Phys. 137 044308
[13] Yan Q B, Sheng X L, Zheng Q R, Su G 2011 Sci. China G: Physics, Mechanics, Astronomy 41 29 (in Chinese) [闫清波, 胜献雷, 郑庆荣, 苏刚 2011 中国科学: 物理学 力学 天文学 41 29]
[14] Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2014 Chin. Phys. B 23 023102
[15] Zeng X B, Zhu X L, Li D H, Chen Z J, Ai Y W 2014 Acta Phys. Sin. 63 153101 (in Chinese) [曾小波, 朱晓玲, 李德华, 陈中钧, 艾应伟 2014 63 153101]
[16] Gu J B, Yang X D, Wang H Q, Li H F 2012 Chin. Phys. B 21 043102
[17] Liu Z F, Lei X L, Liu L R, Liu H Y, Zhu H J 2011 Chin. Phys. B 20 023101
[18] Liu L R, Lei X L, Chen H, Zhu H J 2009 J. At. Mol. Phys. 26 474 (in Chinese) [刘立仁, 雷雪玲, 陈杭, 祝恒江 2009 原子与分子 26 474]
[19] Li Q S, Jin Q 2004 Phys. Chem. A 108 855
[20] Li W L, Romanescu C, Galeev T R, Wang L S, Boldyrev A I 2011 J. Phys. Chem. A 115 10391
[21] Popov I A, Li W L, Piazza Z A, Boldyrev A I, Wang L S 2014 J. Phys. Chem. A ASAP (As Soon As Publishable)
[22] Ruan W, Xie A D, Yu X G, Wu D L 2012 Acta Phys. Sin. 61 043102 (in Chinese) [阮文, 谢安东, 余晓光, 伍冬兰 2012 61 043102]
[23] Ruan W, Xie A D, Wu D L, Luo W L, Yu X G 2014 Chin. Phys. B 23 033101
[24] Yan Y L, Zhao W J, Gao L Z, Hou W Z, Wang Y X 2008 J. At. Mol. Phys. 25 590 (in Chinese) [闫玉丽, 赵文杰, 高丽珍, 侯卫周, 王渊旭 2008 原子与分子 25 590]
[25] Liu X, Zhao G F, Guo L J, Jing Q, Luo Y H 2007 Phys. Rev. A 75 063201
[26] Huang H S, Wu L F, Zhao D Q, Wang X M, Huang X W, Li Y C 2011 J. At. Mol. Phys. 28 676 (in Chinese) [黄海深, 伍良福, 赵冬秋, 王小满, 黄晓伟, 李蕴才 2011 原子与分子 28 676]
[27] Tao J, Perdew J P, Staroverov V N, Scuseria G E 2003 Phys. Rev. Lett. 91 146401
[28] Li L F, Xu C, Cheng L J 2013 Comput. Theor. Chem. 1021 144
[29] Yuan Y, Cheng L J 2013 J. Chem. Phys. 138 024301
[30] Li L F, Cheng L J 2013 J. Chem. Phys. 138 094312
[31] Li L F, Xu C, Jin B K, Cheng L J 2013 J. Chem. Phys. 139 174310
[32] Frisch M J,Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, et al. 2009 Gaussian 09, Revision A. 02. (Wallingford: Gaussian, Inc.)
[33] Zhang X R, Gao C H, Wu L Q, Tang H S 2010 Acta Phys. Sin. 59 5429 (in Chinese) [张秀荣, 高从花, 吴礼清, 唐会帅 2010 59 5429]
[34] Ma F, Zhou Z J, Li Z R, Wu D, Li Y, Li Z S 2010 Chem. Phys. Lett. 488 182
计量
- 文章访问数: 6810
- PDF下载量: 440
- 被引次数: 0