-
水分子跨细胞膜交换是维持细胞稳态和功能的重要过程,是肿瘤增殖、预后以及细胞状态的潜在生物学标志物。利用磁共振方法测量水分子跨细胞膜的交换速率可追溯到20世纪60年代,研究者在血红细胞悬液样本中测量细胞内水分子的停留时间。之后,在生物组织中磁共振信号的多指数特征被发现,研究发现水分子跨膜交换过程有可能是解释该特征的因素之一,利用磁共振方法测量水分子跨细胞膜交换过程的研究至此拉开序幕。经过几十年的发展,磁共振领域目前对水分子跨细胞膜交换测量的技术大致可以分为两类:基于弛豫时间和基于扩散的磁共振测量方法。本文将梳理相关磁共振技术的发展历程,对代表性技术的测量原理、数学/生物物理模型、不同技术的测量结果及验证进行介绍。最后对不同方法的应用场景和优缺点进行讨论,并对该领域的发展进行展望。Transcytolemmal water exchange is a critical process for maintaining cellular homeostasis and function, serving as a potential biological marker for tumor proliferation, prognosis, and cellular states. The application of Magnetic Resonance Imaging (MRI) to measure transcytolemmal water exchange dates back to the 1960s, when researchers first measured the residence time of intracellular water molecules in erythrocyte suspensions. Concurrently, the multi-exponential nature of nuclear magnetic resonance signals in biological tissues was discovered. Studies suggested that transcytolemmal water exchange could be one of the factors explaining this characteristic, marking the beginning of research into measuring transcytolemmal water exchange using magnetic resonance techniques. After decades of development, current MRI techniques for measuring transcytolemmal water exchange can be broadly classified into two types: those using relaxation time as a contrast mechanism and those using diffusion as a contrast mechanism. This review introduces the development of these technologies, discussing the principles, mathematical/biophysical models, results, and validation of representative methods. Regarding relaxation-based MR techniques, this review systematically organizes MRI methodologies for quantifying transcytolemmal water exchange through chronological developments across three biological substrates: ex vivo cell suspensions, ex vivo biological tissues, and in vivo biological tissues. The modeling section emphasizes two frameworks, including the two-site-exchange model and the three-site-two-exchange shutter-speed model. Regarding diffusion-based MR techniques, the review introduces the progress of diffusion-encoding and modeling for water exchange measurement. Diffusion-encoding methods are introduced according to single diffusion encoding sequences and double diffusion encoding sequences. For modeling, it covers three types, including the Kärger model based on the two-component Gaussian diffusion assumption, the modified Kärger model incorporating restricted diffusion effects, and first-order reaction kinetic models. Additionally, comparative studies among different diffusion-based methodologies are also discussed. Finally, this review evaluates their respective clinical applications, advantages, and limitations. Future prospects for technological developments in this field are proposed at the end.
-
Keywords:
- Nuclear magnetic resonance /
- magnetic resonance imaging /
- transcytolemmal water-exchange /
- biophysical models
-
[1] Wolff S D, Balaban R S 1989 Magn. Reson. Med. 10 135
[2] Henkelman R M, Stanisz G J, Graham S J 2001 NMR Biomed. 14 57
[3] Forsén S, Hoffman R A 1963 J. Chem. Phys. 39 2892
[4] Ward K M, Aletras A H, Balaban R S 2000 J. Magn. Reson. 143 79
[5] Verkman A S, van Hoek A N, Ma T, Frigeri A, Skach W R, Mitra A, Tamarappoo B K, Farinas J 1996 Am. J. Physiol. 270 C12
[6] Waldeck A R, Kuchel P W, Lennon A J, Chapman B E 1997 Prog. Nucl. Magn. Reson. Spectrosc. 30 39
[7] Filippi M, Rocca M A 2004 J. Neuroimaging. 14 303
[8] York E N, Thrippleton M J, Meijboom R, Hunt D P J, Waldman A D 2022 Brain Commun. 4 fcac088
[9] Zhou J, Payen J F, Wilson D A, Traystman R J, Van Zijl P C M 2003 Nat. Med. 9 1085
[10] Xu X, Yadav N N, Knutsson L, Hua J, Kalyani R, Hall E, Laterra J, Blakeley J, Strowd R, Pomper M, Barker P, Chan K W Y, Liu G, McMahon M T, Stevens R D, van Zijl P C M 2015 Tomography 1 105
[11] Wang M, Hong X, Chang C F, Li Q, Ma B, Zhang H, Xiang S, Heo H Y, Zhang Y, Lee D H, Jiang S, Leigh R, Koehler R C, Van Zijl P C M, Wang J, Zhou J 2015 Magn. Reson. Med. 74 42
[12] Harston G W J, Tee Y K, Blockley N, Okell T W, Thandeswaran S, Shaya G, Sheerin F, Cellerini M, Payne S, Jezzard P, Chappell M, Kennedy J 2015 Brain 138 36
[13] Ling W, Regatte R R, Navon G, Jerschow A 2008 Proc. Natl. Acad. Sci. U. S. A. 105 2266
[14] Li X, Kuo D, Theologis A, Carballido-Gamio J, Stehling C, Link T M, Ma C B, Majumdar S 2011 Radiology 258 505
[15] Prescott D M, Zeuthen E 1953 Acta Physiol. Scand. 28 77
[16] Ye R, Verkman A S 1989 Biochemistry 28 824
[17] Zhou Z, Zhan J, Cai Q, Xu F, Chai R, Lam K, Luan Z, Zhou G, Tsang S, Kipp M, Han W, Zhang R, Yu A C H 2022 Cells 11 1
[18] Ochoa-de la Paz L D, Gulias-Cañizo R 2022 Front. Cell. Neurosci. 16 1
[19] Kadry H, Noorani B, Cucullo L 2020 Fluids. Barriers. CNS. 17 1
[20] MacAulay N, Keep R F, Zeuthen T 2022 Fluids. Barriers. CNS. 19 1
[21] Klostranec J M, Vucevic D, Bhatia K D, Kortman H G J, Krings T, Murphy K P, TerBrugge K G, Mikulis D J 2021 Radiology 301 502
[22] MacAulay N 2021 Nat. Rev. Neurosci. 22 326
[23] Bai R, Springer C S, Plenz D, Basser P J, Springer Jr. C S, Plenz D, Basser P J 2018 Magn. Reson. Med. 79 3207
[24] Hladky S B, Barrand M A 2016 Fluids. Barriers. CNS. 13 1
[25] Landis C S, Li X, Telang F W, Molina P E, Palyka I, Vetek G, Springer C S 1999 Magn. Reson. Med. 42 467
[26] Wang J, Fernández-Seara M A, Wang S, St Lawrence K S 2007 J. Cereb. Blood Flow Metab. 27 839
[27] Shao X, Ma S J, Casey M, D’Orazio L, Ringman J M, Wang D J J 2019 Magn. Reson. Med. 81 3065
[28] Bai R, Li Z, Sun C, Hsu Y C, Liang H, Basser P 2020 NeuroImage 219 117039
[29] Lin Z, Li Y, Su P, Mao D, Wei Z, Pillai J J, Moghekar A, van Osch M, Ge Y, Lu H 2018 Magn. Reson. Med. 80 1507
[30] Dickie B R, Parker G J M, Parkes L M 2020 Prog. Nucl. Magn. Reson. Spectrosc. 116 19
[31] Ruggiero M R, Baroni S, Pezzana S, Ferrante G, Geninatti Crich S, Aime S 2018 Angew. Chem. Int. Ed. 57 7468
[32] Li X, Huang W, Morris E A, Tudorica L A, Seshan V E, Rooney W D, Tagge I, Wang Y, Xu J, Springer C S 2008 Proc. Natl. Acad. Sci. U. S. A. 105 17937
[33] Kim S, Quon H, Loevner L A, Rosen M A, Dougherty L, Kilger A M, Glickson J D, Poptani H 2007 J. Magn. Reson. Imaging 26 1607
[34] Chawla S, Loevner L A, Kim S G, Hwang W-T, Wang S, Verma G, Mohan S, LiVolsi V, Quon H, Poptani H 2018 Am. J. Neuroradiol. 39 138
[35] Papadopoulos M C, Verkman A S 2007 Pediatr. Nephrol. 22 778
[36] Conlon T, Outhred R 1972 BBA - Biomembr. 288 354
[37] Chien D Y, Macey R I 1977 Biochim. Biophys. Acta BBA - Biomembr. 464 45
[38] Morariu V V, Benga G 1977 Biochim. Biophys. Acta BBA - Biomembr. 469 301
[39] Conlon T, Outhred R 1978 Biochim. Biophys. Acta 511 408
[40] Gianolio E, Ferrauto G, Di Gregorio E, Aime S 2016 Biochim. Biophys. Acta - Biomembr. 1858 627
[41] Jia Y, Xu S, Han G, Wang B, Wang Z, Lan C, Zhao P, Gao M, Zhang Y, Jiang W, Qiu B, Liu R, Hsu Y-C, Sun Y, Liu C, Liu Y, Bai R 2023 Nat. Biomed. Eng. 7 236
[42] Yang D M, Huettner J E, Bretthorst G L, Neil J J, Garbow J R, Ackerman J J H 2018 Magn. Reson. Med. 79 1616
[43] Hazlewood C F, Nichols B L, Chamberlain N F 1969 Nature 222 747
[44] Hazlewood C F 1985 Water and Ions in Biological Systems (Boston, MA: Springer US) pp9-15
[45] Belton P S, Ratcliffe R G 1985 Prog. Nucl. Magn. Reson. Spectrosc. 17 241
[46] Belton P S, Jackson R R, Packer K J 1972 BBA - Gen. Subj. 286 16
[47] McConnell H M 1958 J. Chem. Phys. 28 430
[48] Hazlewood C F, Chang D C, Nichols B L, Woessner D E 1974 Biophys. J. 14 583
[49] Sobol W T, Cameron I G, Inch W R, Pintar M M 1986 Biophys. J. 50 181
[50] Sobol W T, Pintar M M 1987 Magn. Reson. Med. 4 537
[51] Herbst M D, Goldstein J H 1984 J. Magn. Reson. 1969 60 299
[52] Mulkern R V., Bleier A R, Adzamli I K, Spencer R G, Sandor T, Jolesz F A 1989 Biophys. J. 55 221
[53] Landis C S, Li X, Telang F W, Molina P E, Palyka I 1999 Magn. Reson. Med. 42 467
[54] Tofts P S, Brix G, Buckley D L, Evelhoch J L, Henderson E, Knopp M V, Larsson H B W, Lee T-Y, Mayr N A, Parker G J M, Port R E, Taylor J, Weisskoff R M 1999 J. Magn. Reson. Imaging 10 223
[55] Choyke P L, Dwyer A J, Knopp M V. 2003 J. Magn. Reson. Imaging 17 509
[56] Patlak C S, Blasberg R G, Fenstermacher J D 1983 J. Cereb. Blood Flow Metab. 3 1
[57] Tofts P S 1997 J. Magn. Reson. Imaging 7 91
[58] Landis C S, Li X, Telang F W, Coderre J A, Micca P L, Rooney W D, Latour L L, Vétek G, Pályka I, Springer C S 2000 Magn. Reson. Med. 44 563
[59] Springer C S, Rooney W D, Li X 2002 Magn. Reson. Med. 47 422
[60] Zhou R, Pickup S, Yankeelov T E, Springer C S, Glickson J D 2004 Magn. Reson. Med. 52 248
[61] Yankeelov T E, Rooney W D, Li X, Springer C S 2003 Magn. Reson. Med. 50 1151
[62] Li X, Rooney W D, Springer C S 2005 Magn. Reson. Med. 54 1351
[63] Huang W, Li X, Morris E A, Tudorica L A, Seshan V E, Rooney W D, Tagge I, Wang Y, Xu J, Springer C S 2008 Proc. Natl. Acad. Sci. U. S. A. 105 17943
[64] Li X, Huang W, Yankeelov T E, Tudorica A, Rooney W D, Springer C S 2005 Magn. Reson. Med. 53 724
[65] Lowry M, Zelhof B, Liney G P, Gibbs P, Pickles M D, Turnbull L W 2009 Invest. Radiol. 44 577
[66] Li X, Priest R A, Woodward W J, Tagge I J, Siddiqui F, Huang W, Rooney W D, Beer T M, Garzotto M G, Springer C S 2013 Magn. Reson. Med. 69 171
[67] Kim S, Loevner L A, Quon H, Kilger A, Sherman E, Weinstein G, Chalian A, Poptani H 2010 Am. J. Neuroradiol. 31 262
[68] Yankeelov T E, Rooney W D, Huang W, Dyke J P, Li X, Tudorica A, Lee J H, Koutcher J A, Springer C S 2005 NMR Biomed. 18 173
[69] Zhang Y, Poirier-Quinot M, Springer C S, Balschi J A 2011 Biophys. J. 101 2833
[70] Springer C S, Li X, Tudorica L A, Oh K Y, Roy N, Chui S Y C, Naik A M, Holtorf M L, Afzal A, Rooney W D, Huang W 2014 NMR Biomed. 27 760
[71] Bai R, Springer C S, Plenz D, Basser P J, Springer Jr. C S, Plenz D, Basser P J 2018 Magn. Reson. Med. 79 3207
[72] Rooney W D, Li X, Sammi M K, Bourdette D N, Neuwelt E A, Springer C S 2015 NMR Biomed. 28 607
[73] Springer Jr. C S, Springer C S 2018 J. Magn. Reson. 291 110
[74] Springer C S, Baker E M, Li X, Moloney B, Pike M M, Wilson G J, Anderson V C, Sammi M K, Garzotto M G, Kopp R P, Coakley F V., Rooney W D, Maki J H 2022 NMR Biomed. 36 1
[75] Stejskal E O, Tanner J E 1965 J. Chem. Phys. 42 288
[76] Cory D G, Garroway A N, Miller J B 1990 J. Am. Chem. Soc. 199 105
[77] Karger J 1969 Ann. Phys. 24 1
[78] Kärger J 1985 Adv. Colloid Interface Sci. 23 129
[79] Kärger J, Pfeifer H, Heink W 1988 Adv. Magn. Opt. Reson. 12 1
[80] Moutal N, Nilsson M, Topgaard D, Grebenkov D 2018 J. Magn. Reson. 296 72
[81] Andrasko J 1976 Biochim. Biophys. Acta BBA - Gen. Subj. 428 304
[82] Neuman C H 1974 J. Chem. Phys. 60 4508
[83] Tanner J E 1978 J. Chem. Phys. 69 1748
[84] Tanner J E 1983 Arch. Biochem. Biophys. 224 416
[85] Stanisz G J, Szafer A, Wright G A, Henkelman R M 1997 Magn. Reson. Med. 37 103
[86] Pfeuffer J, Flögel U, Leibfritz D 1998 NMR Biomed. 11 11
[87] Tanner J E, Stejskal E O 1968 J. Chem. Phys. 49 1768
[88] Shi D, Liu F, Li S, Chen L, Jiang X, Gore J C, Zheng Q, Guo H, Xu J 2024 J. Magn. Reson. 367 107760
[89] Jensen J H, Helpern J A, Ramani A, Lu H, Kaczynski K 2005 Magn. Reson. Med. 53 1432
[90] Fieremans E, Novikov D S, Jensen J H, Helpern J A 2010 NMR Biomed. 23 711
[91] Zhang J, Lemberskiy G, Moy L, Fieremans E, Novikov D S, Kim S G 2021 NMR Biomed. 34 1
[92] Zhang J, Lemberskiy G, Moy L, Fieremans E, Novikov D S, Kim S G 2021 NMR Biomed. 34 1
[93] Jelescu I O, de Skowronski A, Geffroy F, Palombo M, Novikov D S 2022 NeuroImage 256 119277
[94] Uhl Q, Pavan T, Molendowska M, Jones D K, Palombo M, Jelescu I O 2024 Imaging Neurosci. 2 1
[95] Fieremans E, Novikov D S, Jensen J H, Helpern J A 2010 NMR Biomed. 23 711
[96] Fieremans E, Burcaw L M, Lee H H, Lemberskiy G, Veraart J, Novikov D S 2016 NeuroImage 129 414
[97] Lee H H, Papaioannou A, Novikov D S, Fieremans E 2020 NeuroImage 222 1
[98] Mougel E, Valette J, Palombo M 2024 Imaging Neurosci. 2 1
[99] Callaghan P T, Furó I 2004 J. Chem. Phys. 120 4032
[100] Qiao Y, Galvosas P, Adalsteinsson T, Schönhoff M, Callaghan P T 2005 J. Chem. Phys. 122 214912
[101] Galvosas P, Qiao Y, Schönhoff M, Callaghan P T 2007 Magn. Reson. Imaging 25 497
[102] Cai T X, Benjamini D, Komlosh M E, Basser P J, Williamson N H 2018 J. Magn. Reson. 297 17
[103] Williamson N H, Ravin R, Benjamini D, Merkle H, Falgairolle M, O’Donovan M J, Blivis D, Ide D, Cai T X, Ghorashi N S, Bai R, Basser P J 2019 eLife 8 e51101
[104] Breen-Norris J O, Siow B, Walsh C, Hipwell B, Hill I, Roberts T, Hall M G, Lythgoe M F, Ianus A, Alexander D C, Walker-Samuel S 2020 Magn. Reson. Med. 84 1543
[105] Cai T X, Williamson N H, Ravin R, Basser P J 2022 Front. Phys. 10 1
[106] Cheng Z, Hu S, Han G, Fang K, Jin X, Ordinola A, Özarslan E, Bai R 2023 J. Chem. Phys. 159 054201
[107] Ramadan S, Mountford C 2006 Proc Intl Soc Mag Reson Med 14 1621
[108] Ramadan S 2009 Magn. Reson. Insights 3 3504
[109] Price W S, Barzykin A V, Hayamizu K, Tachiya M 1998 Biophys. J. 74 2259
[110] Åslund I, Nowacka A, Nilsson M, Topgaard D 2009 J. Magn. Reson. 200 291
[111] Goldman M, Shen L 1966 Phys. Rev. 144 321
[112] Voda M A, Demco D E, Voda A, Schauber T, Adler M, Dabisch T, Adams A, Baias M, Blümich B 2006 Macromolecules 39 4802
[113] Åslund I, Nowacka A, Nilsson M, Topgaard D 2009 J. Magn. Reson. 200 291
[114] Lasič S, Nilsson M, Lätt J, Ståhlberg F, Topgaard D 2011 Magn. Reson. Med. 66 356
[115] Nilsson M, Lätt J, Van Westen D, Brockstedt S, Lasič S, Ståhlberg F, Topgaard D 2013 Magn. Reson. Med. 69 1572
[116] Lasič S, Oredsson S, Partridge S C, Saal L H, Topgaard D, Nilsson M, Bryskhe K 2016 NMR Biomed. 29 631
[117] Sønderby C K, Lundell H M, Søgaard L V, Dyrby T B 2014 Magn. Reson. Med. 72 756
[118] Li Z, Pang Z, Cheng J, Hsu Y C, Sun Y, Özarslan E, Bai R 2022 NeuroImage 247 118831
[119] Shin H-G, Li X, Heo H-Y, Knutsson L, Szczepankiewicz F, Nilsson M, van Zijl P C M 2024 Magn. Reson. Med. 92 660
[120] Ludwig D, Laun F B, Ladd M E, Bachert P, Kuder T A 2021 Magn. Reson. Med. 86 677
[121] Khateri M, Reisert M, Sierra A, Tohka J, Kiselev V G 2022 NMR Biomed. 35 e4804
[122] Ordinola A, Özarslan E, Bai R, Herberthson M 2024 J. Chem. Phys. 160 084701
[123] Cai T X, Benjamini D, Komlosh M E, Basser P J, Williamson N H 2018 J. Magn. Reson. 297 17
[124] Tian X, Li H, Jiang X, Xie J, Gore J C, Xu J 2017 J. Magn. Reson. 275 29
[125] Li C, Fieremans E, Novikov D S, Ge Y, Zhang J 2023 Magn. Reson. Med. 89 1441
[126] Li Z, Liang C, He Q, Feiweier T, Hsu Y-C, Li J, Bai R 2025 Magn. Reson. Med. 93 2357
[127] Jelescu I O, de Skowronski A, Geffroy F, Palombo M, Novikov D S 2022 NeuroImage 256 119277
[128] Olesen J L, Østergaard L, Shemesh N, Jespersen S N 2022 NeuroImage 251
[129] Quirk J D, Bretthorst G L, Duong T Q, Snyder A Z, Springer Jr. C S, Ackerman J J H, Neil J J 2003 Magn. Reson. Med. 50 493
[130] Pfeuffer J, Provencher S W, Gruetter R 1999 Magma Magn. Reson. Mater. Phys. Biol. Med. 8 98
[131] Meier C, Dreher W, Leibfritz D 2003 Magn. Reson. Med. 50 510
[132] Fang K, Wang Z, Li Z, Han G, Cheng Z, Chen Z, Lan C, Zhang Y, Zhao P, Jin X, Liu Y, Bai R 2021 J. Magn. Reson. Imaging 53 1898
[133] Fang K, Wang Z, Xia Q, Liu Y, Wang B, Cheng Z, Cheng J, Jin X, Bai R, Li L 2024 IEEE Trans. Biomed. Eng. 71 780
[134] Nedjati-Gilani G L, Schneider T, Hall M G, Cawley N, Hill I, Ciccarelli O, Drobnjak I, Wheeler-Kingshott C A M G, Alexander D C 2017 NeuroImage 150 119
[135] Hill I, Palombo M, Santin M, Branzoli F, Philippe A-C, Wassermann D, Aigrot M-S, Stankoff B, Baron-Van Evercooren A, Felfli M, Langui D, Zhang H, Lehericy S, Petiet A, Alexander D C, Ciccarelli O, Drobnjak I 2021 NeuroImage 224 117425
计量
- 文章访问数: 48
- PDF下载量: 3
- 被引次数: 0