搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

像素偏振片阵列制备及其在偏振图像增强中的应用

张志刚 董凤良 张青川 褚卫国 仇康 程腾 高杰 伍小平

引用本文:
Citation:

像素偏振片阵列制备及其在偏振图像增强中的应用

张志刚, 董凤良, 张青川, 褚卫国, 仇康, 程腾, 高杰, 伍小平

Fabrication of pixelated polarizer array and its application in polarization enhancement

Zhang Zhi-Gang, Dong Feng-Liang, Zhang Qing-Chuan, Chu Wei-Guo, Qiu Kang, Cheng Teng, Gao Jie, Wu Xiao-Ping
PDF
导出引用
  • 像素偏振片阵列在实时测量光的斯托克斯参量方面具有重要的应用. 本文设计和制作了基于金属铝纳米光栅的像素偏振片阵列,制作工艺基于电子束曝光技术. 偏振片阵列单元尺寸为7.4 μm,每相邻2×2单元的透偏振方向分别为0,π/4,π/2 和3π/4. 光栅周期为140 nm,占空比为0.5,深度100 nm,光栅面型为矩形. 像素偏振片阵列的扫描电子显微镜照片显示,制备的偏振片阵列的金属纳米光栅栅线无断线、无交叉、无杂物污染,光栅栅线结构平直,厚度均匀,满足理想矩形面型. 采用偏振光作为照明光的光学显微镜拍摄图片显示,像素偏振片阵列整体形状规则,具有很好的偏振特性,最大偏振透射率可达到79.3%,消光比可达到454. 将像素偏振片阵列与CCD(charge coupled device)集成在一起,采集单帧图像即可计算图像的斯托克斯参量,从而得到拍摄物体线偏振度图像和线偏振角图像,实现了偏振增强,可应用于目标反隐和识别.
    Pixelated polarizer array can be used in the real-time measurement of Stokes parameters. In this paper, pixelated polarizer array based on the aluminum nano-grating is designed and fabricated, and the fabrication technology is electron beam exposure technology. The size of each unit is 7.4 μm, and the polarization directions of each adjacent 2×2 units in the polarizer array are 0, π/4, π/2, and 3π/4. The period, duty cycle, depth and surface type of the grating are 140 nm, 0.5, 100 nm and rectangle type, respectively. The scanning electron micrographs of the pixelated polarizer array show that there is no disconnection, cross and pollution on the fabricated metal nano-grating lines. The nano-grating lines are straight and uniform in thickness, and the surface type of the grating is ideal rectangular type. The polarization optical micrographs show that the pixelated polarizer array has good polarization characteristics. The maximum polarization transmissivity can reach 79.3%, and the extinction ratio can arrive at 454. Furthermore, the pixelated polarizer array is integrated with the charge coupled devise chip, and the Stokes parameters can be calculated from one frame, then the degree of linear polarization and angle of linear polarization can be obtained. Thus, the polarization enhancement of image is achieved, which can be used in the anti-stealth and recognition.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB302105)、国家自然科学基金(批准号:11332010,11102201,11372300)和中国科学院科研装备研制项目(批准号:YZ201265)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB302105), the National Natural Science Foundation of China (Grant Nos. 11332010, 11102201, 11372300), and the Instrument Developing Project of the Chinese Academy of Science (Grant No. YZ201265).
    [1]

    Frish V K 1949 Experientia 5 142

    [2]

    Collett M, Collett T S, Bisch S, Wehner R 1998 Nature 394 269

    [3]

    Labhart T 1999 J. Exp. Biol. 201 757

    [4]

    Shashar N, Rutledge P, Cronin T W 1996 J. Exp. Biol. 199 2077

    [5]

    Chu J, Zhao K, Zhang Q, Wang T 2008 Sens. Actuators A: Phys. 148 75

    [6]

    Chu J K, Wang Z W, Zhang Y J, Wang Y L 2012 Opt. Precision Eng. 20 2237(in Chinese)[褚金奎, 王志文, 张英杰, 王寅龙 2012 光学精密工程 20 2237]

    [7]

    Nordin G P, Meier J T, Deguzman P C, Jones M W 1999 J. Opt. Soc. Am. A 16 1168

    [8]

    Brock N J, Kimbrugh B T, Millierd J E 2011 Proc. of SPIE San Diego, California, USA, August 21, 2011 p81600W-1

    [9]

    Li X D, Tao G, Yang Y Z 2011 Opt. Laser Eng. 33 53

    [10]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W Y, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101(in Chinese)[马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宇, 刘思思, 武兴会, 邹超, 刘世元 2014 63 039101]

    [11]

    Kang Y L, Qiu Y, Lei Z K, Hu M 2005 Opt. Laser Eng. 43 847

    [12]

    Lei Z K, Kang Y L, Qiu Y, Hu M, Cen H 2004 Chin. Phys. Lett. 21 1377

    [13]

    Zhang Z, Zhang Q, Cheng T, Gao J, Wu X 2013 Opt. Eng. 52 103109

    [14]

    Wang M, Cen Y W, Yu X L, Hu X F, Zhu P P 2008 Acta Phys. Sin. 57 6202(in Chinese)[汪敏, 岑豫皖, 余晓流, 胡小方, 朱佩平 2008 57 6202]

    [15]

    Tahara T, Shimozato Y, Xia P, Ito Y, Awatsuji Y, Nishio K, Ura S, Matoba O, Kubota T 2012 Opt. Express 20 19806

    [16]

    Creath K, Goldstein G 2012 Biomed. Opt. Express 3 2866

    [17]

    Gruev V 2011 Opt. Express 19 24361

    [18]

    Zhang Q C, Zhang Z G, Zhao Y, Cheng T, Wu X P 2013 Chinese Patent 201310030039.1 (2013-01-25) (in Chinese)[张青川, 张志刚, 赵旸, 程腾, 伍小平 2013 中国专刊专利申请号: 201310030039.1[2013-01-25]]

    [19]

    Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565

    [20]

    Gruev V, Ortu A, Lazarus N, Spiegel J V, Engheta N 2007 Opt. Express 15 4994

    [21]

    Yang Z Y, Lu Y F 2007 Opt. Express 15 9510

    [22]

    Meng F T, Chu J K, Han Z T, Guo Q 2009 Acta Photon. Sin. 38 951(in Chinese)[孟凡涛, 褚金奎, 韩志涛, 郭庆 2009 光子学报 38 951]

    [23]

    Luo Q, Huang L H, Gu N T, Rao C H 2012 Chin. Phys. B 21 094201

    [24]

    Wang J P, Jin Y X, Ma J Y, Shao J D, Fan Z X 2010 Chin. Phys. B 19 104201

    [25]

    Yu D, Wang H, Liu H P, Wang J, Jiang Y Y, Sun X D 2011 Chin. Phys. B 20 114217

    [26]

    Zhang W F, Kong W J, Yun M J, Liu J H, Sun X 2012 Chin. Phys. B 21 094218

    [27]

    Pan P, An J M, Wang H J, Wang Y, Zhang J S, Wang L L, Dai H Q, Zhang X G, Wu Y D, Hu X W 2014 Chin. Phys. B 23 044210

    [28]

    Bokor N, Shechter R, Davidson N, Friesem A A, Hasman E 2001 Appl. Opt. 40 2076

    [29]

    Zhang N, Chu J K, Zhao K C, Meng F T 2006 Chin. J. Sens. Actuat. 19 1739(in Chinese)[张娜, 褚金奎, 赵开春, 孟凡涛 2006 传感技术学报 19 1739]

    [30]

    Xie H M, Kishimoto S, Shinya N 2000 Opt. Laser Technol. 32 361

    [31]

    Xie H M, Kishimoto S, Li Y J, Liu Q J, Zhao Y P 2009 Microelectron. Reliab. 49 727

    [32]

    Zhao Y R, Lei Z K, Xing Y M 2014 Exp. Mech. 54 45

    [33]

    Xie H M, Dai F L, An B Z, Zhang W 2000 Opt. Tech. 26 526(in Chinese)[谢惠民, 戴福隆, 岸本哲, 张维 2000 光学技术 26 526]

    [34]

    Gruev V, Perkins R 2010 IEEE International Symposium on Circuits and Systems Paris, France, May 30-June 2, 2010 p629

    [35]

    Gruev V, Perkins R, York T 2010 Opt. Express 18 19087

    [36]

    Gruev V, Spiegel J V, Engheta N 2010 Opt. Express 18 19292

  • [1]

    Frish V K 1949 Experientia 5 142

    [2]

    Collett M, Collett T S, Bisch S, Wehner R 1998 Nature 394 269

    [3]

    Labhart T 1999 J. Exp. Biol. 201 757

    [4]

    Shashar N, Rutledge P, Cronin T W 1996 J. Exp. Biol. 199 2077

    [5]

    Chu J, Zhao K, Zhang Q, Wang T 2008 Sens. Actuators A: Phys. 148 75

    [6]

    Chu J K, Wang Z W, Zhang Y J, Wang Y L 2012 Opt. Precision Eng. 20 2237(in Chinese)[褚金奎, 王志文, 张英杰, 王寅龙 2012 光学精密工程 20 2237]

    [7]

    Nordin G P, Meier J T, Deguzman P C, Jones M W 1999 J. Opt. Soc. Am. A 16 1168

    [8]

    Brock N J, Kimbrugh B T, Millierd J E 2011 Proc. of SPIE San Diego, California, USA, August 21, 2011 p81600W-1

    [9]

    Li X D, Tao G, Yang Y Z 2011 Opt. Laser Eng. 33 53

    [10]

    Ma Z C, Xu Z M, Peng J, Sun T Y, Chen X G, Zhao W Y, Liu S S, Wu X H, Zou C, Liu S Y 2014 Acta Phys. Sin. 63 039101(in Chinese)[马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宇, 刘思思, 武兴会, 邹超, 刘世元 2014 63 039101]

    [11]

    Kang Y L, Qiu Y, Lei Z K, Hu M 2005 Opt. Laser Eng. 43 847

    [12]

    Lei Z K, Kang Y L, Qiu Y, Hu M, Cen H 2004 Chin. Phys. Lett. 21 1377

    [13]

    Zhang Z, Zhang Q, Cheng T, Gao J, Wu X 2013 Opt. Eng. 52 103109

    [14]

    Wang M, Cen Y W, Yu X L, Hu X F, Zhu P P 2008 Acta Phys. Sin. 57 6202(in Chinese)[汪敏, 岑豫皖, 余晓流, 胡小方, 朱佩平 2008 57 6202]

    [15]

    Tahara T, Shimozato Y, Xia P, Ito Y, Awatsuji Y, Nishio K, Ura S, Matoba O, Kubota T 2012 Opt. Express 20 19806

    [16]

    Creath K, Goldstein G 2012 Biomed. Opt. Express 3 2866

    [17]

    Gruev V 2011 Opt. Express 19 24361

    [18]

    Zhang Q C, Zhang Z G, Zhao Y, Cheng T, Wu X P 2013 Chinese Patent 201310030039.1 (2013-01-25) (in Chinese)[张青川, 张志刚, 赵旸, 程腾, 伍小平 2013 中国专刊专利申请号: 201310030039.1[2013-01-25]]

    [19]

    Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565

    [20]

    Gruev V, Ortu A, Lazarus N, Spiegel J V, Engheta N 2007 Opt. Express 15 4994

    [21]

    Yang Z Y, Lu Y F 2007 Opt. Express 15 9510

    [22]

    Meng F T, Chu J K, Han Z T, Guo Q 2009 Acta Photon. Sin. 38 951(in Chinese)[孟凡涛, 褚金奎, 韩志涛, 郭庆 2009 光子学报 38 951]

    [23]

    Luo Q, Huang L H, Gu N T, Rao C H 2012 Chin. Phys. B 21 094201

    [24]

    Wang J P, Jin Y X, Ma J Y, Shao J D, Fan Z X 2010 Chin. Phys. B 19 104201

    [25]

    Yu D, Wang H, Liu H P, Wang J, Jiang Y Y, Sun X D 2011 Chin. Phys. B 20 114217

    [26]

    Zhang W F, Kong W J, Yun M J, Liu J H, Sun X 2012 Chin. Phys. B 21 094218

    [27]

    Pan P, An J M, Wang H J, Wang Y, Zhang J S, Wang L L, Dai H Q, Zhang X G, Wu Y D, Hu X W 2014 Chin. Phys. B 23 044210

    [28]

    Bokor N, Shechter R, Davidson N, Friesem A A, Hasman E 2001 Appl. Opt. 40 2076

    [29]

    Zhang N, Chu J K, Zhao K C, Meng F T 2006 Chin. J. Sens. Actuat. 19 1739(in Chinese)[张娜, 褚金奎, 赵开春, 孟凡涛 2006 传感技术学报 19 1739]

    [30]

    Xie H M, Kishimoto S, Shinya N 2000 Opt. Laser Technol. 32 361

    [31]

    Xie H M, Kishimoto S, Li Y J, Liu Q J, Zhao Y P 2009 Microelectron. Reliab. 49 727

    [32]

    Zhao Y R, Lei Z K, Xing Y M 2014 Exp. Mech. 54 45

    [33]

    Xie H M, Dai F L, An B Z, Zhang W 2000 Opt. Tech. 26 526(in Chinese)[谢惠民, 戴福隆, 岸本哲, 张维 2000 光学技术 26 526]

    [34]

    Gruev V, Perkins R 2010 IEEE International Symposium on Circuits and Systems Paris, France, May 30-June 2, 2010 p629

    [35]

    Gruev V, Perkins R, York T 2010 Opt. Express 18 19087

    [36]

    Gruev V, Spiegel J V, Engheta N 2010 Opt. Express 18 19292

  • [1] 吴芳, 步扬, 刘志帆, 王少卿, 李思坤, 王向朝. 深紫外双层金属光栅偏振器的设计与分析.  , 2021, 70(4): 044203. doi: 10.7498/aps.70.20201403
    [2] 殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田. 金属纳米颗粒二聚体阵列的消光截面.  , 2021, 70(2): 024201. doi: 10.7498/aps.70.20200964
    [3] 马婧, 刘冬冬, 王继成, 冯延. 基于金属狭缝阵列的各向异性偏振分束器.  , 2018, 67(9): 094102. doi: 10.7498/aps.67.20172292
    [4] 祁云平, 南向红, 摆玉龙, 王向贤. 基于SPPs-CDEW混合模式的亚波长单缝多凹槽结构全光二极管.  , 2017, 66(11): 117102. doi: 10.7498/aps.66.117102
    [5] 陈聿, 刘垄, 黄忠, 屠林林, 詹鹏. 一维金属光栅嵌入磁性介质纳米结构下的横向磁光克尔效应的增强.  , 2016, 65(14): 147302. doi: 10.7498/aps.65.147302
    [6] 刘钰薇, 张文海, 张继成, 范全平, 魏来, 晏卓阳, 赵屹东, 崔明启, 邱荣, 曹磊峰. 准随机矩形孔阵列透射光栅.  , 2015, 64(7): 074201. doi: 10.7498/aps.64.074201
    [7] 黄运欢, 李璞. 金纳米棒复合体的消光特性.  , 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [8] 殷澄, 许田, 陈秉岩, 韩庆邦. 金属粒子阵列共振的偏振特性.  , 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [9] 褚金奎, 王倩怡, 王志文, 王立鼎. 双层金属纳米光栅的TE偏振光异常透射特性.  , 2015, 64(16): 164206. doi: 10.7498/aps.64.164206
    [10] 凌进中, 黄元申, 王中飞, 王琦, 张大伟, 庄松林. 可调谐型金属线栅偏振器的特性研究.  , 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [11] 黄翀, 陈海清, 廖兆曙, 赵爽. 高量级光衰减时对线偏振片组衰光系数的研究.  , 2010, 59(3): 1756-1761. doi: 10.7498/aps.59.1756
    [12] 邱昆, 武保剑, 文峰. 磁光光纤Bragg光栅中圆偏振光的非线性传输特性.  , 2009, 58(3): 1726-1730. doi: 10.7498/aps.58.1726
    [13] 白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰. 亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究.  , 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [14] 赵华君, 杨守良, 张东, 梁康有, 程正富, 石东平. 亚波长金属偏振分束光栅设计分析.  , 2009, 58(9): 6236-6242. doi: 10.7498/aps.58.6236
    [15] 杜 娟, 张淳民, 赵葆常, 孙 尧. 稳态大视场偏振干涉成像光谱仪中视场补偿型Savart偏光镜透射率研究.  , 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [16] 彭志红, 张淳民, 赵葆常, 李英才, 吴福全. 新型偏振干涉成像光谱仪中Savart偏光镜透射率的研究.  , 2006, 55(12): 6374-6381. doi: 10.7498/aps.55.6374
    [17] 李培丽, 黄德修, 张新亮, 朱光喜. 基于多电极单端耦合半导体光放大器的交叉增益调制型波长转换器.  , 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [18] 谈春雷, 易永祥, 汪国平. 一维金属光栅的透射光学特性.  , 2002, 51(5): 1063-1067. doi: 10.7498/aps.51.1063
    [19] 毛敏耀, 亢昌军, 王添平, 解健芳, 谭淞生, 王渭源, 章熙康, 金晓峰, 庄志诚. 金刚石薄膜的光学透射率研究.  , 1995, 44(9): 1509-1515. doi: 10.7498/aps.44.1509
    [20] 于美文, 张存林. 光致各向异性记录介质偏振全息图的透射矩阵.  , 1992, 41(5): 759-765. doi: 10.7498/aps.41.759
计量
  • 文章访问数:  6968
  • PDF下载量:  808
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-26
  • 修回日期:  2014-04-10
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map