搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短脉冲抽运下频率一致纠缠光源量子特性实验研究

张羽 权润爱 白云 侯飞雁 刘涛 张首刚 董瑞芳

引用本文:
Citation:

超短脉冲抽运下频率一致纠缠光源量子特性实验研究

张羽, 权润爱, 白云, 侯飞雁, 刘涛, 张首刚, 董瑞芳

Frequency indistinguishibility investigation of generated coincident-frequency entanglement via ultra-fast pulsed sources

Zhang Yu, Quan Run-Ai, Bai Yun, Hou Fei-Yan, Liu Tao, Zhang Shou-Gang, Dong Rui-Fang
PDF
导出引用
  • 利用自发参量下转换过程产生的频率纠缠光源在量子信息处理及相关领域中 具有十分重要的应用. 本文利用中心波长为792 nm, 脉冲宽度小于20 fs的脉冲激光源抽运满足II类准相位 匹配条件的周期极化磷酸氧钛钾晶体, 实验产生了偏振相互正交的频率一致纠缠光子对. 基于Hong-Ou-Mandel干涉仪的二阶量子符合干涉装置, 测量到该纠缠双光子对的干涉可见度约为42%, 表明其频率不可分特性较理想频率一致纠缠光源大大降低. 通过理论分析给出, 由于超短脉冲光源对应的宽频谱带宽影响, 相位匹配函数中的高阶色散项不再忽略, 从而导致纠缠光子对的频率不可分性减弱. 进一步利用实验参数给出的数值模拟结果与实验结果符合, 证实了脉冲抽运源带宽对频率一致纠缠光源的量子不可分特性的影响.
    The frequency entangled biphoton source generated via spontaneous parametric down-conversion process (SPDC) has found numerous applications in quantum information processing and relevant fields. We report on an experimental generation of coincident-frequency entanglement from periodically poled potassium titanyl phosphate, pumped by an ultra-short pulsed optical source with duration less than 20 fs. Based on the Hong-Ou-Mandel interferometric coincidence measurement setup, a visibility of about 42% is demonstrated, which indicates degraded frequency indistinguishibility of the down-converted biphotons. Through theoretical investigation, such a degradation can be perfectly explained by the nonnegligible second-order dispersion terms in the Taylor-expanded phase mismatching function for the case of ultra-broadband spectrum of the pulsed pump. The fitting to the experimental results is further used and perfect agreement is achieved. The results imply that the spectral bandwidth of the pump can affect the generated coincident-frequency entanglement.
    • 基金项目: 国家自然科学基金重大仪器专项(批准号: Y133ZK1101);国家自然科学基金(批准号: 11174282); 中国科学院西部之光计划重点项目(批准号: 中科院人教字(2011)180号);中国科学院科技创新交叉与合作团队课题(批准号: 中科院人教字[2012]119号)和 瞬态光学与光子技术国家重点实验室开放基金资助的课题.
    • Funds: Project supported by the State Key Scientific Instruments and Equipment Development Program of China (Grant No. Y133ZK1101), the National Natural Science Foundation of China (Grant No. 11174282), the Key Fund for the Western Light Talent Cultivation Plan of the Chinese Academy of Sciences (Grant No. 180 (2011)), the Fund for the Scientific and Technical Innovation Cross and Cooperation Team of the Chinese Academy of Sciences (Grant No. 119(2012)), and the open fund of the State Key Laboratory of Transient Optics and Photonics, China.
    [1]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Berlin: Springer-Verlag)

    [2]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [3]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [4]

    KimY H, Kulik S P, Shih Y H 2001 Phys. Rev. Lett. 86 1370

    [5]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [6]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729

    [7]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [8]

    Tittel W, Brendel J, Zbinden H, Gisin N 2000 Phys. Rev. Lett. 84 4737

    [9]

    Naik D S, Peterson C G, White A G, Berglund A J, Kwiat P G 2000 Phys. Rev. Lett. 84 4733

    [10]

    Bennett C H, DiVincenzo D 2000 Nature 404 247

    [11]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

    [12]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [13]

    Marek P, Fiurasek J 2010 Phys. Rev. A 82 014304

    [14]

    Tipsmark A, Dong R, Laghaout A, Marek P, Jezek M, Andersen U L 2011 Phys. Rev. A 84 050301(R)

    [15]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [16]

    Altman A R, Köpl K G, Corndorf E, Kumar P, Barbosa G A 2005 Phys. Rev. Lett. 94 123601

    [17]

    Erkmen B I, Shapiro J H 2009 Phys. Rev. A 79 023833

    [18]

    Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594

    [19]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [20]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [21]

    Steinberg A M, Kwiat P G, Chiao R Y 1992 Phys. Rev. A 45 6659

    [22]

    Giovannetti V, Lloyd S, Maccone L 2001 Phys. Rev. Lett. 87 117902

    [23]

    Bahder T B, Golding W M 2004 7th International Conference on Quantum, Communication Glasgow, UK, July 25-29, 2004 p395

    [24]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2635

    [25]

    Abouraddy A F, Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2002 Phys. Rev. A 65 053817

    [26]

    Sergienko A V, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [27]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [28]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [29]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. Lett. 88 183602

    [30]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. A 66 043813

    [31]

    Kuzucu O, Fiorentino M, Albota M A, Wong F C, Kartner F X 2005 Phys. Rev. Lett. 94 083601

    [32]

    Fradkin K, Arie A, Skliar A, Rosenman G 1999 Appl. Phys. Lett. 74 914

    [33]

    Fan T Y, Huang C E, Hu B Q, Eckardt R C, Fan Y X, Byer R L, Feigelson R S 1987 Appl. Opt. 26 2390

    [34]

    Emanueli S, Arie A 2003 Appl. Opt. 42 6661

  • [1]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Berlin: Springer-Verlag)

    [2]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [3]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [4]

    KimY H, Kulik S P, Shih Y H 2001 Phys. Rev. Lett. 86 1370

    [5]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [6]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729

    [7]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [8]

    Tittel W, Brendel J, Zbinden H, Gisin N 2000 Phys. Rev. Lett. 84 4737

    [9]

    Naik D S, Peterson C G, White A G, Berglund A J, Kwiat P G 2000 Phys. Rev. Lett. 84 4733

    [10]

    Bennett C H, DiVincenzo D 2000 Nature 404 247

    [11]

    Ralph T C, Gilchrist A, Milburn G J, Munro W J, Glancy S 2003 Phys. Rev. A 68 042319

    [12]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [13]

    Marek P, Fiurasek J 2010 Phys. Rev. A 82 014304

    [14]

    Tipsmark A, Dong R, Laghaout A, Marek P, Jezek M, Andersen U L 2011 Phys. Rev. A 84 050301(R)

    [15]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [16]

    Altman A R, Köpl K G, Corndorf E, Kumar P, Barbosa G A 2005 Phys. Rev. Lett. 94 123601

    [17]

    Erkmen B I, Shapiro J H 2009 Phys. Rev. A 79 023833

    [18]

    Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594

    [19]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [20]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [21]

    Steinberg A M, Kwiat P G, Chiao R Y 1992 Phys. Rev. A 45 6659

    [22]

    Giovannetti V, Lloyd S, Maccone L 2001 Phys. Rev. Lett. 87 117902

    [23]

    Bahder T B, Golding W M 2004 7th International Conference on Quantum, Communication Glasgow, UK, July 25-29, 2004 p395

    [24]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2635

    [25]

    Abouraddy A F, Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2002 Phys. Rev. A 65 053817

    [26]

    Sergienko A V, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [27]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [28]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [29]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. Lett. 88 183602

    [30]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N C 2002 Phys. Rev. A 66 043813

    [31]

    Kuzucu O, Fiorentino M, Albota M A, Wong F C, Kartner F X 2005 Phys. Rev. Lett. 94 083601

    [32]

    Fradkin K, Arie A, Skliar A, Rosenman G 1999 Appl. Phys. Lett. 74 914

    [33]

    Fan T Y, Huang C E, Hu B Q, Eckardt R C, Fan Y X, Byer R L, Feigelson R S 1987 Appl. Opt. 26 2390

    [34]

    Emanueli S, Arie A 2003 Appl. Opt. 42 6661

  • [1] 翟艺伟, 李旺. 基于SSA-BP网络模型的Hong-Ou-Mandel干涉时延测量研究及其在量子陀螺仪中的应用.  , 2023, 72(13): 138503. doi: 10.7498/aps.72.20230283
    [2] 田颖, 蔡吾豪, 杨子祥, 陈峰, 金锐博, 周强. 强聚焦泵浦产生纠缠光子的Hong-Ou-Mandel干涉.  , 2022, 71(5): 054201. doi: 10.7498/aps.71.20211783
    [3] 刘维新, 唐宁, 马龙行, 高克凡, 孙明哲. Zeeman双频激光器频率分裂与纵模间隔变动一致性分析.  , 2021, 70(7): 074204. doi: 10.7498/aps.70.20200607
    [4] 翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚. 纠缠光子对的级联Hong-Ou-Mandel干涉研究及其在多时延参数测量中的应用.  , 2021, 70(12): 120302. doi: 10.7498/aps.70.20210071
    [5] 魏天丽, 吴德伟, 杨春燕, 罗均文, 李响, 朱浩男. 基于光子计数的纠缠微波压缩角锁定.  , 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [6] 张迪, 张银星, 邱小芬, 祝光湖, 李科赞. 非一致通信时滞动力学网络上的接连滞后同步.  , 2018, 67(1): 018901. doi: 10.7498/aps.67.20171630
    [7] 吴彬彬, 马忠军, 王毅. 领导-跟随多智能体系统的部分分量一致性.  , 2017, 66(6): 060201. doi: 10.7498/aps.66.060201
    [8] 李银海, 许昭怀, 王双, 许立新, 周志远, 史保森. 两个独立全光纤多通道光子纠缠源的Hong-Ou-Mandel干涉.  , 2017, 66(12): 120302. doi: 10.7498/aps.66.120302
    [9] 谢媛艳, 王毅, 马忠军. 领导-跟随多智能体系统的滞后一致性.  , 2014, 63(4): 040202. doi: 10.7498/aps.63.040202
    [10] 王盟盟, 权润爱, 邰朝阳, 侯飞雁, 刘涛, 张首刚, 董瑞芳. 通信波长频率一致纠缠光源的频谱测量.  , 2014, 63(19): 194206. doi: 10.7498/aps.63.194206
    [11] 苏涛, 冯耀东, 赵宏武, 黄德财, 孙刚. 对颗粒物质运动的一致性进行控制的随机力场.  , 2013, 62(16): 164502. doi: 10.7498/aps.62.164502
    [12] 涂俐兰, 刘红芳, 余乐. 噪声下时滞复杂网络的局部自适应H无穷一致性.  , 2013, 62(14): 140506. doi: 10.7498/aps.62.140506
    [13] 郭春生, 万宁, 马卫东, 张燕峰, 熊聪, 冯士维. 恒定温度应力加速实验失效机理一致性快速判别方法.  , 2013, 62(6): 068502. doi: 10.7498/aps.62.068502
    [14] 柯超, 王志明, 涂俐兰. 随机扰动下时滞复杂动力网络的一致性.  , 2013, 62(1): 010508. doi: 10.7498/aps.62.010508
    [15] 纪良浩, 廖晓峰, 刘群. 时延多智能体系统分组一致性分析.  , 2012, 61(22): 220202. doi: 10.7498/aps.61.220202
    [16] 纪良浩, 廖晓峰. 具有不同时延的多智能体系统一致性分析.  , 2012, 61(15): 150202. doi: 10.7498/aps.61.150202
    [17] 刘成林, 刘飞. 时延耦合自主个体的一致性问题.  , 2011, 60(3): 030202. doi: 10.7498/aps.60.030202
    [18] 王 烨, 许小亮, 谢炜宇, 汪壮兵, 吕 柳, 赵亚丽. 两步法制备空间取向高度一致的ZnO纳米棒阵列.  , 2008, 57(4): 2582-2586. doi: 10.7498/aps.57.2582
    [19] А.Ф.杜那耶切夫, В.С.潘多也夫, Ю.Д.布罗高舒金, 唐孝威, М.Н.哈恰图梁. 用γ-γ符合方法测量潘诺夫斯基比值.  , 1962, 18(4): 218-220. doi: 10.7498/aps.18.218
    [20] 徐永昌, 郑林生. 在γ-γ符合测量中康普顿散射所引起的符合.  , 1958, 14(2): 114-120. doi: 10.7498/aps.14.114
计量
  • 文章访问数:  5609
  • PDF下载量:  651
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-18
  • 修回日期:  2013-02-22
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map