搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

领导-跟随多智能体系统的部分分量一致性

吴彬彬 马忠军 王毅

引用本文:
Citation:

领导-跟随多智能体系统的部分分量一致性

吴彬彬, 马忠军, 王毅

Partial component consensus of leader-following multi-agent systems

Wu Bin-Bin, Ma Zhong-Jun, Wang Yi
PDF
导出引用
  • 首先给出多智能体系统的部分分量一致性概念,然后探讨有向网络拓扑结构下的一阶非线性领导-跟随多智能体系统的部分分量一致性问题.通过设计合适的牵引控制器,建立相应的误差系统,将多智能体系统的部分分量一致性转化为误差系统的部分变元稳定性,并运用矩阵理论和稳定性理论,导出该多智能体系统实现部分分量一致性的充分条件.数值模拟验证了理论结果的正确性.
    Consensus problems, as basic topics in distributed coordination of multi-agent systems, have drawn a great deal of attention from different research fields. Generally, consensus refers to the asymptotic convergence of state variables of all agents with time evolution. In this paper, a concept on partial component consensus in multi-agent system is first given, which is a weaker dynamic behavior of group than the consensus in general, and then the problem of partial component consensus in leader-following first-order multi-agent system with the directed network topology is discussed. By designing an appropriate pinning control protocol and building corresponding error system, partial component consensus in multi-agent system is transformed into the partial variable stability of the error system. Using matrix theory and stability theory, a sufficient condition is given to realize partial component consensus in multi-agent system. Numerical simulations are given to illustrate the theoretical results.
      通信作者: 马忠军, mzj1234402@163.com
    • 基金项目: 国家自然科学基金(批准号:11562006,61663006)、广西自然科学基金(批准号:2015GXNSFAA139013)、桂林电子科技大学研究生教育创新计划(批准号:YJCXS201555)、广西优秀中青年骨干教师培养工程项目(批准号:gxqg022014025)和浙江省自然科学基金(批准号:LY17A020007)资助的课题.
      Corresponding author: Ma Zhong-Jun, mzj1234402@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11562006, 61663006), the Natural Science Foundation of Guangxi, China (Grant No. 2015GXNSFAA139013), the Innovation Project of GUET Graduate Education, China (Grant No. YJCXS201555), the Outstanding Young Teachers Training in Higher Education Institutions of Guangxi, China (Grant No. gxqg022014025), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY17A020007).
    [1]

    Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O 1995 Phys. Rev. Lett. 75 1226

    [2]

    Jadbabaie A, Lin J, Morse A S 2003 IEEE Trans. Autom. Control 48 988

    [3]

    Qu Z H, Wang J, Hull R A 2008 IEEE Trans. Autom. Control 53 894

    [4]

    Cortes J, Bullo F 2005 SIAM J. Control Optimization 44 1543

    [5]

    Wang N, Wu Z H, Peng L 2014 Chin. Phys. B 23 108901

    [6]

    Fax J A, Murray R M 2004 IEEE Trans. Autom. Control 49 1465

    [7]

    Olfati-Saber R, Murray R M 2004 IEEE Trans. Autom. Control 49 1520

    [8]

    Guo L X, Hu M F, Hu A H, Xu Z Y 2014 Chin. Phys. B 23 050508

    [9]

    Ji L H, Liao X F 2012 Acta Phys. Sin. 61 150202 (in Chinese) [纪良浩, 廖晓峰 2012 61 150202]

    [10]

    Xie D S, Xie J Q, Zhao H Y 2015 Proceedings of the 34 Chinese Control Conference Hangzhou, China, July 28-30, 2015 p7529

    [11]

    Yu W W, Chen G R, Cao M, Kurths J 2010 Automatica 46 1089

    [12]

    Xin Y M, Li Y X, Huang X, Cheng Z S 2015 Neurocomputing 159 84

    [13]

    Yu W W, Chen G R, Cao M 2011 IEEE Trans. Autom. Control 56 1436

    [14]

    Zhao Y, Li B, Qin J H, Gao H J, Karimi H R 2013 IEEE Trans. Cybernet. 43 2157

    [15]

    Saadi P T, Mardani M M, Shasadeghi M, Safarinezhadian B 2015 4th Iranian Joint Congress on Fuzzy and Intelligent Systems Zahedan, Iran, September 9-11, 2015 p1

    [16]

    Ni W, Cheng D Z 2010 System Control Lett. 59 209

    [17]

    Xie Y Y, Wang Y, Ma Z J 2014 Acta Phys. Sin. 63 040202 (in Chinese) [谢媛艳, 王毅, 马忠军 2014 63 040202]

    [18]

    Xiao F, Wang L, Chen J 2010 System Control Lett. 59 775

    [19]

    Liao X X 2001 Mathematical Theory of Stability and Its Application (Wuhan: Central China Normal University Press) pp19, 321, 336 (in Chinese) [廖晓昕 2001 稳定性的数学理论及应用 (武汉: 华中师范大学出版社) 第19, 321, 336页]

  • [1]

    Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O 1995 Phys. Rev. Lett. 75 1226

    [2]

    Jadbabaie A, Lin J, Morse A S 2003 IEEE Trans. Autom. Control 48 988

    [3]

    Qu Z H, Wang J, Hull R A 2008 IEEE Trans. Autom. Control 53 894

    [4]

    Cortes J, Bullo F 2005 SIAM J. Control Optimization 44 1543

    [5]

    Wang N, Wu Z H, Peng L 2014 Chin. Phys. B 23 108901

    [6]

    Fax J A, Murray R M 2004 IEEE Trans. Autom. Control 49 1465

    [7]

    Olfati-Saber R, Murray R M 2004 IEEE Trans. Autom. Control 49 1520

    [8]

    Guo L X, Hu M F, Hu A H, Xu Z Y 2014 Chin. Phys. B 23 050508

    [9]

    Ji L H, Liao X F 2012 Acta Phys. Sin. 61 150202 (in Chinese) [纪良浩, 廖晓峰 2012 61 150202]

    [10]

    Xie D S, Xie J Q, Zhao H Y 2015 Proceedings of the 34 Chinese Control Conference Hangzhou, China, July 28-30, 2015 p7529

    [11]

    Yu W W, Chen G R, Cao M, Kurths J 2010 Automatica 46 1089

    [12]

    Xin Y M, Li Y X, Huang X, Cheng Z S 2015 Neurocomputing 159 84

    [13]

    Yu W W, Chen G R, Cao M 2011 IEEE Trans. Autom. Control 56 1436

    [14]

    Zhao Y, Li B, Qin J H, Gao H J, Karimi H R 2013 IEEE Trans. Cybernet. 43 2157

    [15]

    Saadi P T, Mardani M M, Shasadeghi M, Safarinezhadian B 2015 4th Iranian Joint Congress on Fuzzy and Intelligent Systems Zahedan, Iran, September 9-11, 2015 p1

    [16]

    Ni W, Cheng D Z 2010 System Control Lett. 59 209

    [17]

    Xie Y Y, Wang Y, Ma Z J 2014 Acta Phys. Sin. 63 040202 (in Chinese) [谢媛艳, 王毅, 马忠军 2014 63 040202]

    [18]

    Xiao F, Wang L, Chen J 2010 System Control Lett. 59 775

    [19]

    Liao X X 2001 Mathematical Theory of Stability and Its Application (Wuhan: Central China Normal University Press) pp19, 321, 336 (in Chinese) [廖晓昕 2001 稳定性的数学理论及应用 (武汉: 华中师范大学出版社) 第19, 321, 336页]

  • [1] 刘维新, 唐宁, 马龙行, 高克凡, 孙明哲. Zeeman双频激光器频率分裂与纵模间隔变动一致性分析.  , 2021, 70(7): 074204. doi: 10.7498/aps.70.20200607
    [2] 班章, 梁静秋, 吕金光, 梁中翥, 冯思悦. 微型曲面发光二极管阵列照度一致性研究.  , 2018, 67(7): 070701. doi: 10.7498/aps.67.20172596
    [3] 王盟盟, 权润爱, 邰朝阳, 侯飞雁, 刘涛, 张首刚, 董瑞芳. 通信波长频率一致纠缠光源的频谱测量.  , 2014, 63(19): 194206. doi: 10.7498/aps.63.194206
    [4] 孙一杰, 张国良, 张胜修, 曾静. 一类异构多智能体系统固定和切换拓扑下的一致性分析.  , 2014, 63(22): 220201. doi: 10.7498/aps.63.220201
    [5] 谢媛艳, 王毅, 马忠军. 领导-跟随多智能体系统的滞后一致性.  , 2014, 63(4): 040202. doi: 10.7498/aps.63.040202
    [6] 张羽, 权润爱, 白云, 侯飞雁, 刘涛, 张首刚, 董瑞芳. 超短脉冲抽运下频率一致纠缠光源量子特性实验研究.  , 2013, 62(14): 144206. doi: 10.7498/aps.62.144206
    [7] 苏涛, 冯耀东, 赵宏武, 黄德财, 孙刚. 对颗粒物质运动的一致性进行控制的随机力场.  , 2013, 62(16): 164502. doi: 10.7498/aps.62.164502
    [8] 涂俐兰, 刘红芳, 余乐. 噪声下时滞复杂网络的局部自适应H无穷一致性.  , 2013, 62(14): 140506. doi: 10.7498/aps.62.140506
    [9] 郭春生, 万宁, 马卫东, 张燕峰, 熊聪, 冯士维. 恒定温度应力加速实验失效机理一致性快速判别方法.  , 2013, 62(6): 068502. doi: 10.7498/aps.62.068502
    [10] 柯超, 王志明, 涂俐兰. 随机扰动下时滞复杂动力网络的一致性.  , 2013, 62(1): 010508. doi: 10.7498/aps.62.010508
    [11] 高在瑞, 沈艳霞, 纪志成. 离散时间切换广义系统的一致有限时间稳定性.  , 2012, 61(12): 120203. doi: 10.7498/aps.61.120203
    [12] 纪良浩, 廖晓峰, 刘群. 时延多智能体系统分组一致性分析.  , 2012, 61(22): 220202. doi: 10.7498/aps.61.220202
    [13] 纪良浩, 廖晓峰. 具有不同时延的多智能体系统一致性分析.  , 2012, 61(15): 150202. doi: 10.7498/aps.61.150202
    [14] 刘成林, 刘飞. 时延耦合自主个体的一致性问题.  , 2011, 60(3): 030202. doi: 10.7498/aps.60.030202
    [15] 李慧, 林鹏, 张春熹. 有leader的二阶动态多智能体网络的L2—L∞控制.  , 2009, 58(1): 158-164. doi: 10.7498/aps.58.158
    [16] 王 烨, 许小亮, 谢炜宇, 汪壮兵, 吕 柳, 赵亚丽. 两步法制备空间取向高度一致的ZnO纳米棒阵列.  , 2008, 57(4): 2582-2586. doi: 10.7498/aps.57.2582
    [17] 庄建军, 宁新宝, 邹 鸣, 孙 飙, 杨 希. 两种熵测度在量化射击运动员短时心率变异性信号复杂度上的一致性.  , 2008, 57(5): 2805-2811. doi: 10.7498/aps.57.2805
    [18] 刘华锋. 利用作用深度信息提高正电子断层成像仪分辨率一致性.  , 2006, 55(10): 5186-5190. doi: 10.7498/aps.55.5186
    [19] 彭子龙, 王伟宁, 朱涛, 韩秀峰, 詹文山. 微细矩形磁性薄膜体系中一致转动磁化模式.  , 2003, 52(11): 2901-2905. doi: 10.7498/aps.52.2991
    [20] 成问好, 李卫, 李传健, 潘伟. 烧结Nd-Fe-B磁体的磁性能一致性与其微观结构的关系.  , 2001, 50(11): 2226-2229. doi: 10.7498/aps.50.2226
计量
  • 文章访问数:  7099
  • PDF下载量:  539
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 修回日期:  2016-11-30
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map