-
利用磁控溅射方法在Si(111)衬底上制备了具有(111)和(222)择优取向的TiN薄膜. 用纳米压痕和纳米划痕方法研究了该薄膜的变形和断裂行为. 用扫描电子显微镜、纳米压痕原位原子力显微镜及原位光学显微镜并结合加-卸载 曲线及划痕曲线获得了薄膜发生变形和断裂的微观信息. 在压痕试验中, TiN薄膜在压入深度为200 nm时表现为塑性变形及压痕周围的局部断裂, 随着压入深度的增大, 塑性变形和局部断裂变得越显著, 当最大压入深度达到临界值1000 nm时, 薄膜和衬底间发生了界面断裂. 在划痕实验中, 100 mN及200 mN的最大载荷均可以引起界面断裂. 最大为200 mN的载荷使得薄膜发生界面断裂的位置比用100 mN载荷时的位置提前, 但其临界断裂载荷和100 mN时及压痕实验时的临界界面断裂载荷基本相同.A TiN coating with (111) and (222) preferred orientations was deposited on a Si(111) substrate by using reactive magnetron sputtering a Ti target. The deformation mechanism and fracture behavior of the coating are determined by nanoindentation and nanocratch experiments. The morphologies of the indentations and nanoscratch marks are revealed by scanning electron microscopy, in situ atomic force microscopy and optical microscopy. Local cracks of TiN appear around the indentation marks when the peak indentation displacement is below the critical value of 1000 nm. As the peak displacement exceeds 1000 nm, an interfacial fracture between the TiN coating and the Si(111) substrate is observed. Nonoscratch tests show that interfacial fractures are also induced by nanoscratch experiments under peak loads of 100 and 200 mN. The critical loads for interfacial fractures under 100 and 200 mN peak loads are equal to those under nanoindentation tests.
-
Keywords:
- TiN coating /
- nanoindentation /
- nonoscratch /
- interfacial fracture
[1] Koehler J S 1970 Phys. Rev. B 2 547
[2] Veprek S, Niederhofer A, Moto K, Bolom T, Mannling H D, Nesladek P, Dollinger G, Bergmaier A 2000 Surf. Coat. Technol. 133-134 152
[3] Yu L H, Dong S R, Xu J H, Li G Y 2008 Acta Phy. Sin. 57 7063 (in Chinese) [喻利花, 董师润, 许俊华, 李戈扬 2008 57 7063]
[4] Kong M, Wei L, Dong Y S, Li G Y 2006 Acta Phy. Sin. 55 0770 (in Chinese) [孔明, 魏仑, 董云杉, 李戈扬 2006 55 0770]
[5] An T, Wen M, Wang L L, Hu C Q, Tian H W, Zheng W T 2009 J. Alloy Compd. 486 515
[6] Anderson P M, Foeckw T, Hazzledine P M 1999 MRS Bull. 24 27
[7] Li G Y, Han Z H, Tian J W, Xu J H, Gu M Y 2002 J. Vac. Sci. Technol. A 20 674
[8] Chu X, Barnett S A, Wong M S, Sproul W D 1993 Surf. Coat. Technol. 57 13
[9] Zhou Y M, Asaki R, Soe W H, Yamamoto R, Chen R, Iwabuchi A 1999 Wear 236 159
[10] Tavares C J, Rebouta L, Andritschky M, and Ramos S 1999 J. Mater. Process. Technol. 93 177
[11] Chu X, Wong M S, Sproul W D, and Barnett S A 1999 J. Mater. Res. 14 2500
[12] Veprek S, Niederhofer A, Moto K, Bolom T, Männling H D, Nesladek P, Dollinger G, Bergmaier A 2000 Surf. Coat. Technol. 133-134 152
[13] An T, Wang L L, Tian H W, Wen M, Zheng W T 2011 Appl. Surf. Sci. 257 7475
[14] An T, Wen M, Hu C Q, Tian H W, Zheng W T 2008 Mater. Sci Eng. A 494 324
-
[1] Koehler J S 1970 Phys. Rev. B 2 547
[2] Veprek S, Niederhofer A, Moto K, Bolom T, Mannling H D, Nesladek P, Dollinger G, Bergmaier A 2000 Surf. Coat. Technol. 133-134 152
[3] Yu L H, Dong S R, Xu J H, Li G Y 2008 Acta Phy. Sin. 57 7063 (in Chinese) [喻利花, 董师润, 许俊华, 李戈扬 2008 57 7063]
[4] Kong M, Wei L, Dong Y S, Li G Y 2006 Acta Phy. Sin. 55 0770 (in Chinese) [孔明, 魏仑, 董云杉, 李戈扬 2006 55 0770]
[5] An T, Wen M, Wang L L, Hu C Q, Tian H W, Zheng W T 2009 J. Alloy Compd. 486 515
[6] Anderson P M, Foeckw T, Hazzledine P M 1999 MRS Bull. 24 27
[7] Li G Y, Han Z H, Tian J W, Xu J H, Gu M Y 2002 J. Vac. Sci. Technol. A 20 674
[8] Chu X, Barnett S A, Wong M S, Sproul W D 1993 Surf. Coat. Technol. 57 13
[9] Zhou Y M, Asaki R, Soe W H, Yamamoto R, Chen R, Iwabuchi A 1999 Wear 236 159
[10] Tavares C J, Rebouta L, Andritschky M, and Ramos S 1999 J. Mater. Process. Technol. 93 177
[11] Chu X, Wong M S, Sproul W D, and Barnett S A 1999 J. Mater. Res. 14 2500
[12] Veprek S, Niederhofer A, Moto K, Bolom T, Männling H D, Nesladek P, Dollinger G, Bergmaier A 2000 Surf. Coat. Technol. 133-134 152
[13] An T, Wang L L, Tian H W, Wen M, Zheng W T 2011 Appl. Surf. Sci. 257 7475
[14] An T, Wen M, Hu C Q, Tian H W, Zheng W T 2008 Mater. Sci Eng. A 494 324
计量
- 文章访问数: 7511
- PDF下载量: 706
- 被引次数: 0