搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

808 nm半导体激光芯片电光转换效率的温度特性机理研究

宋云菲 王贞福 李特 杨国文

引用本文:
Citation:

808 nm半导体激光芯片电光转换效率的温度特性机理研究

宋云菲, 王贞福, 李特, 杨国文

Efficiency analysis of 808 nm laser diode array under different operating temperatures

Song Yun-Fei, Wang Zhen-Fu, Li Te, Yang Guo-Wen
PDF
导出引用
  • 提高808 nm大功率半导体激光器电光转换效率具有重要的学术意义和商业价值,是实现器件小型化、轻量化、高可靠性的必要前提.本文以腔长1.5 mm的传导冷却封装808 nm半导体激光阵列为研究对象,在热沉温度-4025℃范围内对其进行光电特性测试,对不同温度下电光转换效率的影响因子进行了实验研究和理论分析.结果表明: 在-40℃ 环境温度下,最高电光转换效率从室温25℃时的56.7%提高至66.8%,内量子效率高达96.3%,载流子泄漏损耗的占比贡献由16.6%下降至3.1%.该研究对实现808 nm高效率半导体激光芯片的自主研发具有重要意义.
    The 808 nm high-efficiency laser diodes have many advantages, such as high output power, high reliabilities, compact sizes, which are widely used in many areas, such as industry, communication, science, medicine and biology. In order to improve the power conversion efficiencies of 808 nm laser diodes, the following requirements must be considered, such as loss of joule heating, loss by the carrier leakage, spontaneous radiation loss below the threshold current, loss by interface voltage defect, internal losses including free-carrier absorption loss and scattering loss. These losses above are closely related to the operating temperature of laser diode. In this paper, power conversion efficiency analysis is demonstrated from the aspects of the output power, threshold current, slope efficiency, voltage, and series resistance at different temperatures.. This is the first time that the detailed study has been carried out under various temperatures (up to the lowest temperature of -40℃). And the detailed study above can be of benefit to designing the wafer epitaxial structure. High-power 808 nm laser diode arrays are mounted on conduction cooled heatsinks. And the laser chips have 47 emitters with 50% in fill factor, 100 m stripe in width and 1.5 mm in cavity length. The asymmetric broad waveguide epitaxial structure with lower absorption loss in p-type waveguide and cladding layer is designed in order to reduce the internal losses. The device performances are measured under operating temperatures ranging from -40℃ to 25℃ including the output power, threshold current, slope efficiency, series resistance, voltage, etc. Then the power conversion efficiency of 808 nm laser diode arrays are demonstrated from the output characteristics at different operating temperatures. With temperature decreasing, the series resistance gradually increases. The loss of joule heating ratio rises from 7.8% to 10.3%. In that case, the high series resistance is the major factor to prevent the efficiency from further improving at a low temperature of -40℃. As temperature decreases from 25℃ to -40℃, the carrier leakage ratio is reduced from 16.6% to 3.1%, the carrier leakage is the dominant factor for increasing efficiency, which means that it is necessary to optimize the epitaxial structure in order to reduce the carrier leakage at the room temperature. Comparing the two different work temperatures from -30℃ to -40℃, the carrier leakage ratio only changes 0.1%, which implies that the carrier leakage could be ignored under the low temperature. Meanwhile, as temperature decreases from 25℃ to -40℃, the power conversion efficiency increases from 56.7% to 66.8%.
      通信作者: 杨国文, yangguowen@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61504167)和中国科学院百人计划(批准号:Y429941233)资助的课题.
      Corresponding author: Yang Guo-Wen, yangguowen@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61504167) and the 100 Talents Project of Chinese Academy of Sciences, China (Grant No. Y429941233).
    [1]

    Bachmann F 2003 Appl. Surf. Sci. 208 125

    [2]

    Lepselter J, Elman M 2004 J. Dermatolog Treat. 15 72

    [3]

    Li M Y, He J 2015 Semiconductor Technology 321 (in Chinese) [李明月, 何君 2015 半导体技术 321]

    [4]

    Skidmore J, Peters M, Rossin V, Guo J, Xiao Y, Cheng J, Shieh A, Srinivasan R, Singh J, Wei C, Duesterberg R, Morehead J J, Zucker E 2016 Proc. SPIE 9733 97330B

    [5]

    Diehl, R (Ed) 2003 High-Power Diode Lasers: Fundamentals, Technology, Applications (Vol. 78) (Springer Science & Business Media Preface)

    [6]

    Wang L J, Ning Y Q, Qi L, Tong C Z, Chen Y Y 2015 Chinese J. Luminescence 36 19 (in Chinese) [王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹 2015 发光学报 36 19]

    [7]

    Crump P, Dong W, Grimshaw M, Wang J, Patterson S, Wise D, DeFranza M, Elim S, Zhang S, Bougher M, Patterson J, Das S, Bell J, Farmer J, DeVito M, Martinsen R 2007 Proc. SPIE. 6456 64560M

    [8]

    Crump P, Erbert G, Wenzel H, Frevert C, Schultz C M, Hasler K H, Staske R, Sumpf B, Maassdorf A, Bugge F, Knigge S, Trankle G 2013 IEEE J. Sel. Topics Quantum Electron. 19 1501211

    [9]

    Stickley C M, Hach E E 2006 Proc. SPIE. 6104 610405

    [10]

    Peters M, Rossin V, Everett M, Zucker E 2007 Proc. SPIE. 6456 64560G

    [11]

    Crump P, Wenzel H, Erbert G, Ressel P, Zorn M, Bugge F, Einfeldt S, Staske R, Zeimer U, Pietrzak A, Trankle G 2008 IEEE Photon. Technol. Lett. 20 1378

    [12]

    Morales J, Lehkonen S, Liu G, Schleuning D, Acklin B 2016 Proc. SPIE. 9733 97330T

    [13]

    Liu, S P, Zhong L, Zhang H Y, Wang C L, Feng X M, Ma X Y 2008 J. Semiconductors 29 2335 (in Chinese) [刘素平, 仲莉, 张海燕, 王翠鸾, 冯小明, 马骁宇 2008 半导体学报 29 2335]

    [14]

    Xu X H, Liu Y Y, Wang X W, Ma X Y 2014 Semiconductor Technology 56 (in Chinese) [徐小红, 刘媛媛, 王晓薇, 马骁宇 2014 半导体技术 56]

    [15]

    Wang Z F, Yang G W, Wu J Y, Song K C, Li X S, Song Y F 2016 Acta Phys. Sin. 65 164203 (in Chinese) [王贞福, 杨国文, 吴建耀, 宋克昌, 李秀山, 宋云菲 2016 65 164203]

    [16]

    Crump P, Grimshaw M, Wan J, Dong W, Zhan S, Das S, Farmer J, DeVito M 2006 Proc. CLEO/QELS JWB24

    [17]

    Bour D P, Rosen A 1989 J. Appl. Phys. 66 2813

    [18]

    Rinner F, Rogg J, Friedmann P, Mikulla M, Weimann G, Poprawe R 2002 Appl. Phys. Lett. 80 19

    [19]

    Mermelstein C, Kanskar M, Earles T, Goodnough T, Stiers E, Botez D, Mawst L J, Bour D P 2005 Proc. SPIE 5738 47

  • [1]

    Bachmann F 2003 Appl. Surf. Sci. 208 125

    [2]

    Lepselter J, Elman M 2004 J. Dermatolog Treat. 15 72

    [3]

    Li M Y, He J 2015 Semiconductor Technology 321 (in Chinese) [李明月, 何君 2015 半导体技术 321]

    [4]

    Skidmore J, Peters M, Rossin V, Guo J, Xiao Y, Cheng J, Shieh A, Srinivasan R, Singh J, Wei C, Duesterberg R, Morehead J J, Zucker E 2016 Proc. SPIE 9733 97330B

    [5]

    Diehl, R (Ed) 2003 High-Power Diode Lasers: Fundamentals, Technology, Applications (Vol. 78) (Springer Science & Business Media Preface)

    [6]

    Wang L J, Ning Y Q, Qi L, Tong C Z, Chen Y Y 2015 Chinese J. Luminescence 36 19 (in Chinese) [王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹 2015 发光学报 36 19]

    [7]

    Crump P, Dong W, Grimshaw M, Wang J, Patterson S, Wise D, DeFranza M, Elim S, Zhang S, Bougher M, Patterson J, Das S, Bell J, Farmer J, DeVito M, Martinsen R 2007 Proc. SPIE. 6456 64560M

    [8]

    Crump P, Erbert G, Wenzel H, Frevert C, Schultz C M, Hasler K H, Staske R, Sumpf B, Maassdorf A, Bugge F, Knigge S, Trankle G 2013 IEEE J. Sel. Topics Quantum Electron. 19 1501211

    [9]

    Stickley C M, Hach E E 2006 Proc. SPIE. 6104 610405

    [10]

    Peters M, Rossin V, Everett M, Zucker E 2007 Proc. SPIE. 6456 64560G

    [11]

    Crump P, Wenzel H, Erbert G, Ressel P, Zorn M, Bugge F, Einfeldt S, Staske R, Zeimer U, Pietrzak A, Trankle G 2008 IEEE Photon. Technol. Lett. 20 1378

    [12]

    Morales J, Lehkonen S, Liu G, Schleuning D, Acklin B 2016 Proc. SPIE. 9733 97330T

    [13]

    Liu, S P, Zhong L, Zhang H Y, Wang C L, Feng X M, Ma X Y 2008 J. Semiconductors 29 2335 (in Chinese) [刘素平, 仲莉, 张海燕, 王翠鸾, 冯小明, 马骁宇 2008 半导体学报 29 2335]

    [14]

    Xu X H, Liu Y Y, Wang X W, Ma X Y 2014 Semiconductor Technology 56 (in Chinese) [徐小红, 刘媛媛, 王晓薇, 马骁宇 2014 半导体技术 56]

    [15]

    Wang Z F, Yang G W, Wu J Y, Song K C, Li X S, Song Y F 2016 Acta Phys. Sin. 65 164203 (in Chinese) [王贞福, 杨国文, 吴建耀, 宋克昌, 李秀山, 宋云菲 2016 65 164203]

    [16]

    Crump P, Grimshaw M, Wan J, Dong W, Zhan S, Das S, Farmer J, DeVito M 2006 Proc. CLEO/QELS JWB24

    [17]

    Bour D P, Rosen A 1989 J. Appl. Phys. 66 2813

    [18]

    Rinner F, Rogg J, Friedmann P, Mikulla M, Weimann G, Poprawe R 2002 Appl. Phys. Lett. 80 19

    [19]

    Mermelstein C, Kanskar M, Earles T, Goodnough T, Stiers E, Botez D, Mawst L J, Bour D P 2005 Proc. SPIE 5738 47

  • [1] 齐海东, 王晶, 陈中军, 吴忠华, 宋西平. 温度对马氏体和铁素体晶格常数影响规律.  , 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] 王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨. 不同温度压力对浓度反演精度的定量分析.  , 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化. 基于飞秒激光成丝测量燃烧场温度.  , 2020, 69(23): 234207. doi: 10.7498/aps.69.20200939
    [4] 赵顾颢, 毛少杰, 赵尚弘, 蒙文, 祝捷, 张小强, 王国栋, 谷文苑. 双旋光双反射结构的温度-辐射自稳定性原理和实验研究.  , 2019, 68(16): 164202. doi: 10.7498/aps.68.20190429
    [5] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟.  , 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [6] 唐远河, 王淑华, 崔进, 徐颖, 梅屹峰, 李存霞. 被动遥测矿井CO气体温度及浓度的正演研究.  , 2016, 65(18): 184201. doi: 10.7498/aps.65.184201
    [7] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变.  , 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [8] 朱金荣, 范吕超, 苏垣昌, 胡经国. 温度、缺陷对磁畴壁动力学行为的影响.  , 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [9] 王贞福, 杨国文, 吴建耀, 宋克昌, 李秀山, 宋云菲. 高功率、高效率808nm半导体激光器阵列.  , 2016, 65(16): 164203. doi: 10.7498/aps.65.164203
    [10] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响.  , 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [11] 顾源, 石荣晔, 王延辉. 分布式反馈激光抽运铯磁力仪灵敏度相关参数研究.  , 2014, 63(11): 110701. doi: 10.7498/aps.63.110701
    [12] 蒋中英, 张国梁, 马晶, 朱涛. 磷脂在膜结构间的交换:温度和离子强度的影响.  , 2013, 62(1): 018701. doi: 10.7498/aps.62.018701
    [13] 阴明, 周寿桓, 冯国英. 可调谐准相位匹配高效宽带二次谐波转换.  , 2012, 61(23): 234206. doi: 10.7498/aps.61.234206
    [14] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性.  , 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [15] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响.  , 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [16] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性.  , 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [17] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究.  , 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [18] 陈丕恒, 敖冰云, 李炬, 李嵘, 申亮. 温度对bcc铁中He行为影响的模拟研究.  , 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [19] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应.  , 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [20] 唐永建, 赵永宽, 蒋伟阳, 朱正和, 刘元琼. 等温环境中激光惯性约束聚变冷冻靶丸内部液氢层分布(已撤稿).  , 1999, 48(12): 2208-2214. doi: 10.7498/aps.48.2208
计量
  • 文章访问数:  7210
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-01
  • 修回日期:  2017-03-08
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map