-
提高808 nm大功率半导体激光器电光转换效率具有重要的学术意义和商业价值,是实现器件小型化、轻量化、高可靠性的必要前提.本文以腔长1.5 mm的传导冷却封装808 nm半导体激光阵列为研究对象,在热沉温度-4025℃范围内对其进行光电特性测试,对不同温度下电光转换效率的影响因子进行了实验研究和理论分析.结果表明: 在-40℃ 环境温度下,最高电光转换效率从室温25℃时的56.7%提高至66.8%,内量子效率高达96.3%,载流子泄漏损耗的占比贡献由16.6%下降至3.1%.该研究对实现808 nm高效率半导体激光芯片的自主研发具有重要意义.The 808 nm high-efficiency laser diodes have many advantages, such as high output power, high reliabilities, compact sizes, which are widely used in many areas, such as industry, communication, science, medicine and biology. In order to improve the power conversion efficiencies of 808 nm laser diodes, the following requirements must be considered, such as loss of joule heating, loss by the carrier leakage, spontaneous radiation loss below the threshold current, loss by interface voltage defect, internal losses including free-carrier absorption loss and scattering loss. These losses above are closely related to the operating temperature of laser diode. In this paper, power conversion efficiency analysis is demonstrated from the aspects of the output power, threshold current, slope efficiency, voltage, and series resistance at different temperatures.. This is the first time that the detailed study has been carried out under various temperatures (up to the lowest temperature of -40℃). And the detailed study above can be of benefit to designing the wafer epitaxial structure. High-power 808 nm laser diode arrays are mounted on conduction cooled heatsinks. And the laser chips have 47 emitters with 50% in fill factor, 100 m stripe in width and 1.5 mm in cavity length. The asymmetric broad waveguide epitaxial structure with lower absorption loss in p-type waveguide and cladding layer is designed in order to reduce the internal losses. The device performances are measured under operating temperatures ranging from -40℃ to 25℃ including the output power, threshold current, slope efficiency, series resistance, voltage, etc. Then the power conversion efficiency of 808 nm laser diode arrays are demonstrated from the output characteristics at different operating temperatures. With temperature decreasing, the series resistance gradually increases. The loss of joule heating ratio rises from 7.8% to 10.3%. In that case, the high series resistance is the major factor to prevent the efficiency from further improving at a low temperature of -40℃. As temperature decreases from 25℃ to -40℃, the carrier leakage ratio is reduced from 16.6% to 3.1%, the carrier leakage is the dominant factor for increasing efficiency, which means that it is necessary to optimize the epitaxial structure in order to reduce the carrier leakage at the room temperature. Comparing the two different work temperatures from -30℃ to -40℃, the carrier leakage ratio only changes 0.1%, which implies that the carrier leakage could be ignored under the low temperature. Meanwhile, as temperature decreases from 25℃ to -40℃, the power conversion efficiency increases from 56.7% to 66.8%.
-
Keywords:
- laser chip /
- power conversion efficiency /
- temperature
[1] Bachmann F 2003 Appl. Surf. Sci. 208 125
[2] Lepselter J, Elman M 2004 J. Dermatolog Treat. 15 72
[3] Li M Y, He J 2015 Semiconductor Technology 321 (in Chinese) [李明月, 何君 2015 半导体技术 321]
[4] Skidmore J, Peters M, Rossin V, Guo J, Xiao Y, Cheng J, Shieh A, Srinivasan R, Singh J, Wei C, Duesterberg R, Morehead J J, Zucker E 2016 Proc. SPIE 9733 97330B
[5] Diehl, R (Ed) 2003 High-Power Diode Lasers: Fundamentals, Technology, Applications (Vol. 78) (Springer Science & Business Media Preface)
[6] Wang L J, Ning Y Q, Qi L, Tong C Z, Chen Y Y 2015 Chinese J. Luminescence 36 19 (in Chinese) [王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹 2015 发光学报 36 19]
[7] Crump P, Dong W, Grimshaw M, Wang J, Patterson S, Wise D, DeFranza M, Elim S, Zhang S, Bougher M, Patterson J, Das S, Bell J, Farmer J, DeVito M, Martinsen R 2007 Proc. SPIE. 6456 64560M
[8] Crump P, Erbert G, Wenzel H, Frevert C, Schultz C M, Hasler K H, Staske R, Sumpf B, Maassdorf A, Bugge F, Knigge S, Trankle G 2013 IEEE J. Sel. Topics Quantum Electron. 19 1501211
[9] Stickley C M, Hach E E 2006 Proc. SPIE. 6104 610405
[10] Peters M, Rossin V, Everett M, Zucker E 2007 Proc. SPIE. 6456 64560G
[11] Crump P, Wenzel H, Erbert G, Ressel P, Zorn M, Bugge F, Einfeldt S, Staske R, Zeimer U, Pietrzak A, Trankle G 2008 IEEE Photon. Technol. Lett. 20 1378
[12] Morales J, Lehkonen S, Liu G, Schleuning D, Acklin B 2016 Proc. SPIE. 9733 97330T
[13] Liu, S P, Zhong L, Zhang H Y, Wang C L, Feng X M, Ma X Y 2008 J. Semiconductors 29 2335 (in Chinese) [刘素平, 仲莉, 张海燕, 王翠鸾, 冯小明, 马骁宇 2008 半导体学报 29 2335]
[14] Xu X H, Liu Y Y, Wang X W, Ma X Y 2014 Semiconductor Technology 56 (in Chinese) [徐小红, 刘媛媛, 王晓薇, 马骁宇 2014 半导体技术 56]
[15] Wang Z F, Yang G W, Wu J Y, Song K C, Li X S, Song Y F 2016 Acta Phys. Sin. 65 164203 (in Chinese) [王贞福, 杨国文, 吴建耀, 宋克昌, 李秀山, 宋云菲 2016 65 164203]
[16] Crump P, Grimshaw M, Wan J, Dong W, Zhan S, Das S, Farmer J, DeVito M 2006 Proc. CLEO/QELS JWB24
[17] Bour D P, Rosen A 1989 J. Appl. Phys. 66 2813
[18] Rinner F, Rogg J, Friedmann P, Mikulla M, Weimann G, Poprawe R 2002 Appl. Phys. Lett. 80 19
[19] Mermelstein C, Kanskar M, Earles T, Goodnough T, Stiers E, Botez D, Mawst L J, Bour D P 2005 Proc. SPIE 5738 47
-
[1] Bachmann F 2003 Appl. Surf. Sci. 208 125
[2] Lepselter J, Elman M 2004 J. Dermatolog Treat. 15 72
[3] Li M Y, He J 2015 Semiconductor Technology 321 (in Chinese) [李明月, 何君 2015 半导体技术 321]
[4] Skidmore J, Peters M, Rossin V, Guo J, Xiao Y, Cheng J, Shieh A, Srinivasan R, Singh J, Wei C, Duesterberg R, Morehead J J, Zucker E 2016 Proc. SPIE 9733 97330B
[5] Diehl, R (Ed) 2003 High-Power Diode Lasers: Fundamentals, Technology, Applications (Vol. 78) (Springer Science & Business Media Preface)
[6] Wang L J, Ning Y Q, Qi L, Tong C Z, Chen Y Y 2015 Chinese J. Luminescence 36 19 (in Chinese) [王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹 2015 发光学报 36 19]
[7] Crump P, Dong W, Grimshaw M, Wang J, Patterson S, Wise D, DeFranza M, Elim S, Zhang S, Bougher M, Patterson J, Das S, Bell J, Farmer J, DeVito M, Martinsen R 2007 Proc. SPIE. 6456 64560M
[8] Crump P, Erbert G, Wenzel H, Frevert C, Schultz C M, Hasler K H, Staske R, Sumpf B, Maassdorf A, Bugge F, Knigge S, Trankle G 2013 IEEE J. Sel. Topics Quantum Electron. 19 1501211
[9] Stickley C M, Hach E E 2006 Proc. SPIE. 6104 610405
[10] Peters M, Rossin V, Everett M, Zucker E 2007 Proc. SPIE. 6456 64560G
[11] Crump P, Wenzel H, Erbert G, Ressel P, Zorn M, Bugge F, Einfeldt S, Staske R, Zeimer U, Pietrzak A, Trankle G 2008 IEEE Photon. Technol. Lett. 20 1378
[12] Morales J, Lehkonen S, Liu G, Schleuning D, Acklin B 2016 Proc. SPIE. 9733 97330T
[13] Liu, S P, Zhong L, Zhang H Y, Wang C L, Feng X M, Ma X Y 2008 J. Semiconductors 29 2335 (in Chinese) [刘素平, 仲莉, 张海燕, 王翠鸾, 冯小明, 马骁宇 2008 半导体学报 29 2335]
[14] Xu X H, Liu Y Y, Wang X W, Ma X Y 2014 Semiconductor Technology 56 (in Chinese) [徐小红, 刘媛媛, 王晓薇, 马骁宇 2014 半导体技术 56]
[15] Wang Z F, Yang G W, Wu J Y, Song K C, Li X S, Song Y F 2016 Acta Phys. Sin. 65 164203 (in Chinese) [王贞福, 杨国文, 吴建耀, 宋克昌, 李秀山, 宋云菲 2016 65 164203]
[16] Crump P, Grimshaw M, Wan J, Dong W, Zhan S, Das S, Farmer J, DeVito M 2006 Proc. CLEO/QELS JWB24
[17] Bour D P, Rosen A 1989 J. Appl. Phys. 66 2813
[18] Rinner F, Rogg J, Friedmann P, Mikulla M, Weimann G, Poprawe R 2002 Appl. Phys. Lett. 80 19
[19] Mermelstein C, Kanskar M, Earles T, Goodnough T, Stiers E, Botez D, Mawst L J, Bour D P 2005 Proc. SPIE 5738 47
计量
- 文章访问数: 7210
- PDF下载量: 428
- 被引次数: 0