搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性液体中非磁性小球与磁性纳米颗粒的相互作用及磁组装

邓海东 李海

引用本文:
Citation:

磁性液体中非磁性小球与磁性纳米颗粒的相互作用及磁组装

邓海东, 李海

Interaction and assembly of non-magnetic spheres and magnetic nanoparticles dispersed in magnetic fluid

Deng Hai-Dong, Li Hai
PDF
导出引用
  • 利用磁性液体与聚苯乙烯小球溶液混合得到的复合磁性液体, 研究了聚苯乙烯小球和磁性纳米颗粒在外加磁场作用下的动力学过程. 实验结果表明, 当外加磁场的方向平行于样品平面时, 聚苯乙烯小球在沿着磁场的方向上表现出相互吸引而形成链状结构, 其动力学过程可分为聚苯乙烯小球被反磁化产生相互吸引而形成短链的快过程以及短链间相互吸引形成长链的慢过程; 当外加磁场的方向垂直于样品平面时, 相邻聚苯乙烯小球表现出排斥的相互作用而形成短程有序的二维结构, 当磁场强度增加到一定的阈值时, 聚苯乙烯小球和磁性纳米颗粒形成的团簇会产生相互吸引而组装成复合式的花瓣结构.
    In this paper, we systematically investigate the dynamics of non-magnetic spheres (polystyrene spheres) and magnetic nanoparticles dispersed in Fe3O4 magnetic colloid under an externally applied magnetic field. It is found that the polystyrene spheres form chain-like structures when the direction of magnetic field is parallel to the sample cell. The whole dynamic process of polystyrene spheres in the magnetic field can be characterized by a fast interaction between polystyrene spheres and magnetic nanoparticles and a slow interaction among polystyrene chain-like structures respectively. When a magnetic field is applied in the direction perpendicular to the sample cell, polystyrene spheres can be assembled into a short-range ordered two-dimensional structure due to the repulsive interaction among polystyrene spheres. Once the applied magnetic field excesses a critical level, a flower-shaped complex structure can be formed due to the attractive interaction between the polystyrene sphere and the magnetic cluster.
    • 基金项目: 广东省自然科学基金(批准号: S2012040007719)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. S2012040007719).
    [1]

    Miao Y P, Yao J Q 2013 Acta Phys. Sin. 62 044223 (in Chinese) [苗银萍, 姚建铨 2013 62 044223]

    [2]

    Yu G J, Pu S L, Wang X, Ji H Z 2012 Acta Phys. Sin. 61 194703 (in Chinese) [于国君,卜胜利, 王响, 纪红柱 2012 61 044223]

    [3]

    Liu G X, Xu C, Zhang P Q, Wu T W 2009 Acta Phys. Sin. 58 2005 (in Chinese) [刘桂雄, 徐晨, 张沛强, 吴庭万 2009 58 2005]

    [4]

    Skjeltorp A T 1983 Phys. Rev. Lett. 51 2306

    [5]

    Helgesen G, Skjeltorp A T, Mors P M, Botet R, Jullien R 1988 Phys. Rev. Lett. 61 1736

    [6]

    Skjeltorp A T, Meakin P 1988 Nature 335 424

    [7]

    Skjeltorp A T 1985 J. Appl. Phys. 57 3285

    [8]

    Skjeltorp A T 1987 Phys. Rev. Lett. 58 1444

    [9]

    Erb R M, Son H S, Samanta B, Rotello V M, Yellen B B 2009 Nature 457 999

    [10]

    Yellen B B, Hovorka O, Friedman G 2005 Proc. Natl. Acad. Sci. USA 102 8860

    [11]

    Yellen B B, Friedman G 2004 Adv. Mater. 16 111

    [12]

    Khalil K S, Sagastegui A, Li Y, Tahir M A, Socolar J E S, Wiley B J, Yellen B B 2012 Nature Commun. 3 794

    [13]

    Kim H, Ge J, Kim J, Choi S, Lee H, Lee H, Park W, Yin Y, Kwon S 2009 Nature Photon. 3 534

    [14]

    Ge J, He L, Goebl J, Yin Y 2009 J. Am. Chem. Soc. 131 3484

    [15]

    Ge J, Huynh T, Hu Y, Yin Y 2008 Nano Lett. 8 931

    [16]

    He L, Hu Y, Kim H, Ge J, Kwon S, Yin Y 2010 Nano Lett. 10 4708

    [17]

    He L, Wang M, Zhang Q, Lu Y, Yin Y 2013 Nano Lett. 13 264

    [18]

    Erb R M, Libanori R, Rothfuchs N, Studart A R 2012 Science 335 109

    [19]

    Hong C Y, Horng H E, Kuo F C, Yang S Y, Yang H C, Wu J M 1999 Appl. Phys. Lett. 75 2196

  • [1]

    Miao Y P, Yao J Q 2013 Acta Phys. Sin. 62 044223 (in Chinese) [苗银萍, 姚建铨 2013 62 044223]

    [2]

    Yu G J, Pu S L, Wang X, Ji H Z 2012 Acta Phys. Sin. 61 194703 (in Chinese) [于国君,卜胜利, 王响, 纪红柱 2012 61 044223]

    [3]

    Liu G X, Xu C, Zhang P Q, Wu T W 2009 Acta Phys. Sin. 58 2005 (in Chinese) [刘桂雄, 徐晨, 张沛强, 吴庭万 2009 58 2005]

    [4]

    Skjeltorp A T 1983 Phys. Rev. Lett. 51 2306

    [5]

    Helgesen G, Skjeltorp A T, Mors P M, Botet R, Jullien R 1988 Phys. Rev. Lett. 61 1736

    [6]

    Skjeltorp A T, Meakin P 1988 Nature 335 424

    [7]

    Skjeltorp A T 1985 J. Appl. Phys. 57 3285

    [8]

    Skjeltorp A T 1987 Phys. Rev. Lett. 58 1444

    [9]

    Erb R M, Son H S, Samanta B, Rotello V M, Yellen B B 2009 Nature 457 999

    [10]

    Yellen B B, Hovorka O, Friedman G 2005 Proc. Natl. Acad. Sci. USA 102 8860

    [11]

    Yellen B B, Friedman G 2004 Adv. Mater. 16 111

    [12]

    Khalil K S, Sagastegui A, Li Y, Tahir M A, Socolar J E S, Wiley B J, Yellen B B 2012 Nature Commun. 3 794

    [13]

    Kim H, Ge J, Kim J, Choi S, Lee H, Lee H, Park W, Yin Y, Kwon S 2009 Nature Photon. 3 534

    [14]

    Ge J, He L, Goebl J, Yin Y 2009 J. Am. Chem. Soc. 131 3484

    [15]

    Ge J, Huynh T, Hu Y, Yin Y 2008 Nano Lett. 8 931

    [16]

    He L, Hu Y, Kim H, Ge J, Kwon S, Yin Y 2010 Nano Lett. 10 4708

    [17]

    He L, Wang M, Zhang Q, Lu Y, Yin Y 2013 Nano Lett. 13 264

    [18]

    Erb R M, Libanori R, Rothfuchs N, Studart A R 2012 Science 335 109

    [19]

    Hong C Y, Horng H E, Kuo F C, Yang S Y, Yang H C, Wu J M 1999 Appl. Phys. Lett. 75 2196

  • [1] 秦志杰, 张惠晴, 张广平, 任俊峰, 王传奎, 胡贵超, 邱帅. 通过边缘修饰在非磁性石墨烯基单分子结中引入自旋的理论研究.  , 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [2] 覃维, 安书悦, 陈帅, 龚荣洲, 王鲜. 基于迭代反演的非磁性材料复介电常数测量及初值选取方法.  , 2023, 72(7): 070601. doi: 10.7498/aps.72.20222224
    [3] 陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦. 非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿.  , 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [4] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束.  , 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [5] 张柱, 吴智政, 江新祥, 王园园, 朱进利, 李峰. 磁液变形镜的镜面动力学建模和实验验证.  , 2018, 67(3): 034702. doi: 10.7498/aps.67.20171281
    [6] 陈木凤, 李翔, 牛小东, 李游, Adnan, 山口博司. 两个非磁性颗粒在磁流体中的沉降现象研究.  , 2017, 66(16): 164703. doi: 10.7498/aps.66.164703
    [7] 潘敏, 黄整, 赵勇. 强关联效应下非磁性元素Ir掺杂的SmFeAsO电子结构理论研究.  , 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [8] 于国君, 卜胜利, 王响, 纪红柱. 基于硅柱-磁性液体体系的光子晶体的可调谐负折射特性研究.  , 2012, 61(19): 194703. doi: 10.7498/aps.61.194703
    [9] 宋亚舞, 孙 华. 非磁性半导体异常磁电阻效应的有效介质理论.  , 2008, 57(11): 7178-7184. doi: 10.7498/aps.57.7178
    [10] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟.  , 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [11] 郑 鹉, 王艾玲, 姜宏伟, 周云松, 李 彤. Co-Pt-C颗粒膜的磁性.  , 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [12] 杨海涛, 申承民, 杜世萱, 苏轶坤, 王岩国, 汪裕萍, 高鸿钧. 钴纳米粒子自组装有序阵列与磁性.  , 2003, 52(12): 3114-3119. doi: 10.7498/aps.52.3114
    [13] 张晓渝, 陈亚杰. 磁性颗粒复合体磁渗流区矫顽力异常的研究.  , 2003, 52(8): 2052-2056. doi: 10.7498/aps.52.2052
    [14] 申承民, 苏轶坤, 杨海涛, 杨天中, 汪裕萍, 高鸿钧. 磁性钴纳米晶的二维自组装.  , 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
    [15] 王文鼐, 臧文成, 顾刚, 都有为, 洪建明. 镍超微颗粒的表面磁性.  , 1992, 41(9): 1537-1541. doi: 10.7498/aps.41.1537
    [16] 都有为, 徐明祥, 吴坚, 史莹冰, 陆怀先, 薛荣华. 镍超细微颗粒的磁性.  , 1992, 41(1): 149-154. doi: 10.7498/aps.41.149
    [17] 都有为, 童兴武, 钟伟, 王挺祥, 干昌明, 章肖融. 超声波在磁性液体中的传播特性.  , 1992, 41(1): 144-148. doi: 10.7498/aps.41.144
    [18] 陈凌孚, 王强华. 具有非磁性缺陷的二维自旋玻璃模型.  , 1989, 38(5): 840-845. doi: 10.7498/aps.38.840
    [19] 许培英, 盛冬宁, 陆怀先. 磁性液体的介电特性.  , 1988, 37(7): 1192-1196. doi: 10.7498/aps.37.1192
    [20] 朱浩荣, 居广林, 唐秀云, 沈学础. 两级非磁性超高压装置.  , 1984, 33(4): 472-476. doi: 10.7498/aps.33.472
计量
  • 文章访问数:  6436
  • PDF下载量:  693
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-28
  • 修回日期:  2013-02-28
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map