-
本文在多通道量子数亏损理论(MQDT)框架下,利用相对论多通道理论(RMCT),分别在冻结实近似、 考虑l=-1的偶极极化效应、l=+1的偶极极化效应、l= 1的偶极极化效应、伸缩模效应以及同时考虑偶极极化效应和伸缩模效应等不同层次近似下,系统地计算了碱金属Li, Na, K, Rb, Cs和Fr七个里德伯系列的能级,即ns2S1/2, np2P1/2, np2P3/2, nd2D3/2, nd2D5/2, nf2F5/2 和nf2F7/2.计算结果表明,电子关联效应对碱金属原子的里德伯能级的影响很大.总的来说,偶极极化效应比伸缩模效应重要,而在偶极极化效应中, l = + 1的偶极极化效应比l = - 1的偶极极化效应重要.但对于Na的ns2S1/2,(nd2D3/2,nd2D5/2)里德伯系列的能级,和Li的(np2P1/2,np2P3/2)里德伯系列的能级,是伸缩模效应比较重要.In the frame work of multi-channel quantum defect theory, the energy levels of Rydberg series of ss2S1/2, np2P1/2, np2P3/2, nd2D3/2, nd2D5/2, nf2F5/2 and nf2F7/2 of alkali-metal atom are calculated by the relativistic multi-channel theory, in five different approximations, i.e., frozen core approximation, with consideration of l=-1 dipole polarization effect, l=+1 dipole polarization effect, l = 1 dipole polarization effect, stretch effect, and both dipole polarization effects and stretch effect, respectively. The present calculations show that electron correlation effect plays an important role in the energy level of Rydberg series. In summary, dipole polarization effect is more important than the stretch effect, and the l = + 1 dipole polarization effect is more important than l = - 1 dipole polarization effect. However, stretch effect is more important for energy levels of both Rydberg series ns2S1/2,(nd2D3/2,nd2D5/2) of Na, and Rydberg series (np2P1/2,np2P3/2) of Li.
-
Keywords:
- relativistic multi-channel theory /
- multi-channel quantum defect theory /
- alkali-metal /
- Rydberg series
[1] Yan J, Zhang P H, Tong X M, Li J M 1996 Acta Phys. Sin. 45 1978 (in Chinese)[颜君, 张培鸿, 仝晓民, 李家明 1996 45 1978]
[2] Xia D, Li J M 2001 Chin. Phys. Lett. 18 1334
[3] Eliav E, Kaldor U, Ishikawa Y 1994 Phys. Rev. A 50 1121
[4] Safronova M S, Johnson W R, Derevianko A 1999 Phys. Rev. A 60 4476
[5] Jaffé C, Reinhardt W P 1977 J. Chem. Phys. 66 1285
[6] Qu L H, Wang Z W, Li B W 1999 Acta Phys. Sin.(Overseas) 8 0423(in Chinese) [屈连华, 王志文, 李文白 1999 (海外版) 8 0423]
[7] Chen C, Han X Y, Li J M 2005 Phys. Rev. A 71 042503
[8] Safronova U I, Johnson W R, Safronova M S 2007 Phys. Rev. A 76 042504
[9] Huang S Z, Chu J M 2010 Chin. Phys. B 19 063101
[10] Sansonetti J E 2007 J. Phys. Chem. Ref. Data 36 497
[11] Lee C M, Lu K T 1973 Phys. Rev. A 8 1241
[12] Fano U 1970 Phys. Rev. A 2 353
[13] Seaton M J 1983 Rep. Prog. Phys. 46 167
[14] Greene C, Fano U, Strinati G 1979 Phys. Rev. A 19 1485
[15] Lee C M, Johnson W R 1980 Phys. Scr. A 21 409
[16] Huang W, Zou Y, Tong X M, Li J M 1995 Phys. Rev. A 52 2770
[17] Li J M, Wu Y J, Pratt R H 1989 Phys. Rev. A 40 3036
[18] Xia D, Zhang S Z, Peng Y L, Li J M 2003 Chin. Phys. Lett. 20 56
[19] Lee C M 1974 Phys. Rev. A 10 584
[20] Sossah A M, Zhou H L, Manson S T 2008 Phys. Rev. A 78 053405
[21] Shi Y L, Dong C Z 2009 Acta Phys. Sin. 58 2350 (in Chinese)[师应龙, 董晨钟 2009 58 2350]
[22] Libermann D A, Comer D T, Waber J T 1971 Comput. Phys. Commun. 2 107
[23] Huang W, Xu X Y, Xu C B, Xue M, Chen D Y 1995 J. Opt. Soc. Am. B 12 961
[24] Zhao Z X, Li J M 1983 Acta Phys. Sin. 34 1469 (in Chinese)[赵中新, 李家明 1983 34 1469]
-
[1] Yan J, Zhang P H, Tong X M, Li J M 1996 Acta Phys. Sin. 45 1978 (in Chinese)[颜君, 张培鸿, 仝晓民, 李家明 1996 45 1978]
[2] Xia D, Li J M 2001 Chin. Phys. Lett. 18 1334
[3] Eliav E, Kaldor U, Ishikawa Y 1994 Phys. Rev. A 50 1121
[4] Safronova M S, Johnson W R, Derevianko A 1999 Phys. Rev. A 60 4476
[5] Jaffé C, Reinhardt W P 1977 J. Chem. Phys. 66 1285
[6] Qu L H, Wang Z W, Li B W 1999 Acta Phys. Sin.(Overseas) 8 0423(in Chinese) [屈连华, 王志文, 李文白 1999 (海外版) 8 0423]
[7] Chen C, Han X Y, Li J M 2005 Phys. Rev. A 71 042503
[8] Safronova U I, Johnson W R, Safronova M S 2007 Phys. Rev. A 76 042504
[9] Huang S Z, Chu J M 2010 Chin. Phys. B 19 063101
[10] Sansonetti J E 2007 J. Phys. Chem. Ref. Data 36 497
[11] Lee C M, Lu K T 1973 Phys. Rev. A 8 1241
[12] Fano U 1970 Phys. Rev. A 2 353
[13] Seaton M J 1983 Rep. Prog. Phys. 46 167
[14] Greene C, Fano U, Strinati G 1979 Phys. Rev. A 19 1485
[15] Lee C M, Johnson W R 1980 Phys. Scr. A 21 409
[16] Huang W, Zou Y, Tong X M, Li J M 1995 Phys. Rev. A 52 2770
[17] Li J M, Wu Y J, Pratt R H 1989 Phys. Rev. A 40 3036
[18] Xia D, Zhang S Z, Peng Y L, Li J M 2003 Chin. Phys. Lett. 20 56
[19] Lee C M 1974 Phys. Rev. A 10 584
[20] Sossah A M, Zhou H L, Manson S T 2008 Phys. Rev. A 78 053405
[21] Shi Y L, Dong C Z 2009 Acta Phys. Sin. 58 2350 (in Chinese)[师应龙, 董晨钟 2009 58 2350]
[22] Libermann D A, Comer D T, Waber J T 1971 Comput. Phys. Commun. 2 107
[23] Huang W, Xu X Y, Xu C B, Xue M, Chen D Y 1995 J. Opt. Soc. Am. B 12 961
[24] Zhao Z X, Li J M 1983 Acta Phys. Sin. 34 1469 (in Chinese)[赵中新, 李家明 1983 34 1469]
计量
- 文章访问数: 9008
- PDF下载量: 650
- 被引次数: 0