搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cosserat弹性杆动力学普遍定理的守恒量问题

薛纭 王鹏

引用本文:
Citation:

Cosserat弹性杆动力学普遍定理的守恒量问题

薛纭, 王鹏

The conserved quantities in general theorems ofthe Cosserat elastic rod dynamics

Xue Yun, Wang Peng
PDF
导出引用
  • 根据Cosserat弹性杆的动力学普遍定理,讨论其守恒量问题. 因弹性杆的动力学方程是以截面为对象,并且是以弧坐标和时间为双自变量,其守恒量必定是以积分的形式给出,分别存在关于弧坐标或时间守恒的问题. 根据弹性杆的动量和动量矩方程,导出其动量守恒和动量矩守恒的存在条件及其表达,并讨论了关于沿中心线弧坐标的守恒问题;再分别根据弹性杆关于时间和弧坐标的能量方程导出了各自的关于时间和弧坐标的守恒量存在条件及其表达, 结果包括了弹性杆的机械能守恒以及平衡时的应变能积分;守恒问题给出了例子. 积分形式的守恒量对于弹性杆动力学的理论分析和数值计算都具有实际意义.
    Conserved quantities of the Cosserat elastic rod dynamics are studied according to the general theorems of dynamics. The rod dynamical equation takes the cross section of the rod as its objective of study and is expressed by two independent variables, the arc coordinate of the rod and the time, so the conserved quantities are written in the integral forms and there exist the arc coordinate conservation and the time conservation. The existence conditions and the formulas of conservations of momentum and moment of momentum are derived from the theorem of momentum and the theorem of moment of momentum respectively, which contain two cases of conserved quanties, one is the time and the other is arc coordinate. Also existence conditions and formulas of conservations of energy about time and are coordinate, which contain mechanical energy conservation, are derived from energy equations about the time and arc coordinate of the rod respectively. All of conservative motions of the rod are explained by examples. The conserved quantities in the integral form are of practical significance in both theoretical and numerical analysis for the Cosserat elastic rod dynamics.
    • 基金项目: 国家自然科学基金(批准号:10972143)资助的课题.
    [1]

    Liu Y Z 2006 Nonlinear Mechanics of Thin Elastic Rod:Theoritical Basis of Mechanical Model of DNA (Beijing: Tsinghua University Press,Springer) p14,32 (in Chinese)[刘延柱 2006 弹性细杆的非线性力学:DNA力学模型的理论基础(北京:清华大学出版社, Springer) 第14,32页)]

    [2]

    Liu Y Z 2003 Mech.Eng. 25(1) 1 (in Chinese) [刘延柱 2003 力学与实践 25(1) 1]

    [3]

    Ou Yang Z C 2003 Phys. 32 728 (in Chinese) [欧阳钟灿 2003 物理 32 728]

    [4]

    Xue Y, Liu Y Z 2009 Acta Phys. Sin. 58 6737(in Chinese)[薛 纭、刘延柱 2009 58 6737 ]

    [5]

    Liu Y Z, Xue Y, Chen L Q 2004 Acta Phys. Sin. 53 2424(in Chinese)[刘延柱、薛 纭、陈立群 2004 53 2424]

    [6]

    Xue Y, Liu Y Z, Chen L Q 2005 Chin. J. Theor. Appl. Mech. 37 485 (in Chinese) [薛 纭、刘延柱、陈立群 2005 力学学报 37 485]

    [7]

    Xue Y,Liu Y Z 2006 Acta Phys. Sin. 55 3845 (in Chinese)[薛 纭、刘延柱 2006 55 3845]

    [8]

    Xue Y,Weng D W 2009 Acta Phys. Sin. 58 34(in Chinese)[薛 纭、翁德玮 2009 58 34]

    [9]

    Yaoming S, Hearst J E 1994 J. Chem. Phys. 101 5186

    [10]

    Xue Y, Liu Y Z, Chen L Q 2004 Chin. Phys. 13 794

    [11]

    Liu Y Z 2009 Chin. Phys. B 18 1

    [12]

    Cao D Q, Tucker R W 2008 International J. Solids and Structure 45 460

    [13]

    Maddocks J H, Dichmann D J 1994 J. Elasticity 34 83

    [14]

    Zhao W J,Weng Y Q, Fu J L 2007 Chin. Phys. Lett. 24 2773

    [15]

    Wei P J 2007 Integral Equation and Its Numerical Caculation (Beijing: Metallurgical Industry Press) p8(in Chinese)[魏培君 2007 积分方程及其数值计算(北京:冶金工业出版社) 第8页]

    [16]

    Xue Y, Weng D W, Chen L Q 2009 Chin. Quart. Mech. 30(1) 119(in Chinese)[薛 纭、翁德玮、陈立群 2009 力学季刊 30(1)116]

    [17]

    Mei F X, Shang M 2000 Acta Phys. Sin. 49 1901(in Chinese)[梅凤翔、尚 玫 2000 49 1901]

    [18]

    Zhang Y, Ge W K 2009 Acta Phys. Sin. 58 7447 (in Chinese)[张 毅、葛伟宽 2009 58 7447]

  • [1]

    Liu Y Z 2006 Nonlinear Mechanics of Thin Elastic Rod:Theoritical Basis of Mechanical Model of DNA (Beijing: Tsinghua University Press,Springer) p14,32 (in Chinese)[刘延柱 2006 弹性细杆的非线性力学:DNA力学模型的理论基础(北京:清华大学出版社, Springer) 第14,32页)]

    [2]

    Liu Y Z 2003 Mech.Eng. 25(1) 1 (in Chinese) [刘延柱 2003 力学与实践 25(1) 1]

    [3]

    Ou Yang Z C 2003 Phys. 32 728 (in Chinese) [欧阳钟灿 2003 物理 32 728]

    [4]

    Xue Y, Liu Y Z 2009 Acta Phys. Sin. 58 6737(in Chinese)[薛 纭、刘延柱 2009 58 6737 ]

    [5]

    Liu Y Z, Xue Y, Chen L Q 2004 Acta Phys. Sin. 53 2424(in Chinese)[刘延柱、薛 纭、陈立群 2004 53 2424]

    [6]

    Xue Y, Liu Y Z, Chen L Q 2005 Chin. J. Theor. Appl. Mech. 37 485 (in Chinese) [薛 纭、刘延柱、陈立群 2005 力学学报 37 485]

    [7]

    Xue Y,Liu Y Z 2006 Acta Phys. Sin. 55 3845 (in Chinese)[薛 纭、刘延柱 2006 55 3845]

    [8]

    Xue Y,Weng D W 2009 Acta Phys. Sin. 58 34(in Chinese)[薛 纭、翁德玮 2009 58 34]

    [9]

    Yaoming S, Hearst J E 1994 J. Chem. Phys. 101 5186

    [10]

    Xue Y, Liu Y Z, Chen L Q 2004 Chin. Phys. 13 794

    [11]

    Liu Y Z 2009 Chin. Phys. B 18 1

    [12]

    Cao D Q, Tucker R W 2008 International J. Solids and Structure 45 460

    [13]

    Maddocks J H, Dichmann D J 1994 J. Elasticity 34 83

    [14]

    Zhao W J,Weng Y Q, Fu J L 2007 Chin. Phys. Lett. 24 2773

    [15]

    Wei P J 2007 Integral Equation and Its Numerical Caculation (Beijing: Metallurgical Industry Press) p8(in Chinese)[魏培君 2007 积分方程及其数值计算(北京:冶金工业出版社) 第8页]

    [16]

    Xue Y, Weng D W, Chen L Q 2009 Chin. Quart. Mech. 30(1) 119(in Chinese)[薛 纭、翁德玮、陈立群 2009 力学季刊 30(1)116]

    [17]

    Mei F X, Shang M 2000 Acta Phys. Sin. 49 1901(in Chinese)[梅凤翔、尚 玫 2000 49 1901]

    [18]

    Zhang Y, Ge W K 2009 Acta Phys. Sin. 58 7447 (in Chinese)[张 毅、葛伟宽 2009 58 7447]

  • [1] 刘延柱, 薛纭. 基于高斯原理的Cosserat弹性杆动力学模型.  , 2015, 64(4): 044601. doi: 10.7498/aps.64.044601
    [2] 王廷志, 孙现亭, 韩月林. 相空间中相对运动完整力学系统的共形不变性与守恒量.  , 2014, 63(10): 104502. doi: 10.7498/aps.63.104502
    [3] 张毅. 相对论性力学系统的Birkhoff对称性与守恒量.  , 2012, 61(21): 214501. doi: 10.7498/aps.61.214501
    [4] 葛伟宽, 张毅, 薛纭. Rosenberg问题的对称性与守恒量.  , 2010, 59(7): 4434-4436. doi: 10.7498/aps.59.4434
    [5] 楼智美. 三自由度二阶非线性耦合动力学系统守恒量的扩展Prelle-Singer求法.  , 2010, 59(6): 3633-3638. doi: 10.7498/aps.59.3633
    [6] 刘仰魁. 一般完整力学系统Mei对称性的一种守恒量.  , 2010, 59(1): 7-10. doi: 10.7498/aps.59.7
    [7] 董文山, 黄宝歆. 广义非完整力学系统的Lie对称性与Noether守恒量.  , 2010, 59(1): 1-6. doi: 10.7498/aps.59.1
    [8] 楼智美. 二阶非线性耦合动力学系统守恒量的扩展Prelle-Singer求法与对称性研究.  , 2010, 59(2): 719-723. doi: 10.7498/aps.59.719
    [9] 张毅. 广义Birkhoff系统的Birkhoff对称性与守恒量.  , 2009, 58(11): 7436-7439. doi: 10.7498/aps.58.7436
    [10] 贾利群, 崔金超, 张耀宇, 罗绍凯. Chetaev型约束力学系统Appell方程的Lie对称性与守恒量.  , 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [11] 陈向炜, 赵永红, 刘畅. 变质量完整动力学系统的共形不变性与守恒量.  , 2009, 58(8): 5150-5154. doi: 10.7498/aps.58.5150
    [12] 张 凯, 王 策, 周利斌. Nambu力学系统的Lie对称性及其守恒量.  , 2008, 57(11): 6718-6721. doi: 10.7498/aps.57.6718
    [13] 刘仰魁, 方建会. 相空间中变质量力学系统Lie-Mei对称性的两个守恒量.  , 2008, 57(11): 6699-6703. doi: 10.7498/aps.57.6699
    [14] 郑世旺, 乔永芬. 准坐标下广义非保守系统Lagrange方程的积分因子与守恒定理.  , 2006, 55(7): 3241-3245. doi: 10.7498/aps.55.3241
    [15] 葛伟宽. 质量变化对力学系统形式不变性和守恒量的影响.  , 2005, 54(6): 2478-2481. doi: 10.7498/aps.54.2478
    [16] 张 毅. 相空间中单面完整约束力学系统的对称性与守恒量.  , 2005, 54(10): 4488-4495. doi: 10.7498/aps.54.4488
    [17] 方建会, 廖永潘, 彭 勇. 相空间中力学系统的两类Mei对称性及守恒量.  , 2005, 54(2): 500-503. doi: 10.7498/aps.54.500
    [18] 张 毅. 广义经典力学系统的对称性与Mei守恒量.  , 2005, 54(7): 2980-2984. doi: 10.7498/aps.54.2980
    [19] 郑世旺, 傅景礼, 李显辉. 机电动力系统的动量依赖对称性和非Noether守恒量.  , 2005, 54(12): 5511-5516. doi: 10.7498/aps.54.5511
    [20] 张 毅, 范存新, 葛伟宽. Birkhoff系统的一类新型守恒量.  , 2004, 53(11): 3644-3647. doi: 10.7498/aps.53.3644
计量
  • 文章访问数:  9460
  • PDF下载量:  702
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-06
  • 修回日期:  2011-06-18
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map