Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research Progress of Quantum Battery

WANG Lu WU Fenglin LI Nana GUO Senyan FAN Hao LIU Shuqian LIU Siyuan

Citation:

Research Progress of Quantum Battery

WANG Lu, WU Fenglin, LI Nana, GUO Senyan, FAN Hao, LIU Shuqian, LIU Siyuan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Quantum battery is a new energy storage concept designed based on the principles of quantum mechanics, aimed at overcoming the physical limitations of traditional electrochemical batteries in terms of energy density, charging speed, and efficiency. This review provides a comprehensive synthesis of recent theoretical and experimental progress in the field, emphasizing the underlying theoretical framework and the core physical mechanisms that govern energy storage, transport, and extraction. Central attention is given to the essential roles of quantum coherence and entanglement in enhancing charging performance and enabling collective phenomena. The thermodynamic foundations of quantum batteries are introduced, including stored energy, ergotropy, capacity, power, and energy fluctuations. The review then examines the structural characteristics and charging behaviors of several representative quantum battery models in depth, including light-matter interaction batteries based on the Tavis-Cummings or Dicke framework, spin-chain batteries with various interaction types, high-dimensional (three-level and multi-level) batteries employing adiabatic and shortcut-to-adiabatic control, as well as Rydberg-atom-based batteries featuring switchable strong long-range interactions. For each model, the influence of initial states, coupling strength, system size, and excitation distribution on charging dynamics, capacity, and power scaling is systematically discussed. Furthermore, key challenges faced by quantum many-body battery models in realistic environments are reviewed, particularly in relation to their open-system characteristics. We summarize recent advances in understanding how decoherence, dissipation, and environmental noise degrade battery performance, while highlighting how non-Markovian memory effects can stabilize energy flow or partially restore lost coherence. Measurement-based feedback control, dissipative engineering, and decoherence-free subspace techniques are introduced as promising strategies to suppress decoherence, mitigate self-discharge, and extend battery lifetime. The potential quantum advantages in self-discharge suppression, energy retention, and anti-aging mechanisms are also examined. Finally, the review explores feasible implementation routes toward long-distance or wireless quantum charging, and surveys experimental platforms capable of realizing quantum batteries, including superconducting circuits, trapped ions, cavity-QED systems, optomechanical devices, and Rydberg arrays. Overall, quantum battery research is undergoing rapid expansion, and its progress not only promises transformative innovations in next-generation energy storage technologies, but also provides a powerful experimental platform for advancing quantum thermodynamics, quantum resource theory, and the physics of nonequilibrium quantum systems.
  • [1]

    Alicki R, Fannes M 2013 Phys. Rev. E 87 042123

    [2]

    Campaioli F, Gherardini S, Quach J Q, Polini M, Andolina G M 2024 Rev. Mod. Phys. 96 031001

    [3]

    Zhang J L, Wang P F, Chen W T, Cai Z Y, Qiao M, Li R L, Huang Y Y, Tian H N, Luan C Y, Tu H C, Cui K F, Yan L L, Zhang J H, Zhang J N, Yung M, Kim K 2025 Phys. Rev. Lett. 135 140403

    [4]

    Song W L, Wang J L, Zhou B, Yang W L, An J H 2025 Phys. Rev. Lett. 135 020405

    [5]

    Andolina G M, Stanzione V, Giovannetti V, Polini M 2025 Phys. Rev. Lett. 134 240403

    [6]

    Medina I, Culhane O, Binder F C, Landi G T, Goold J 2025 Phys. Rev. Lett. 134 220402

    [7]

    Pokhrel S, Gea-Banacloche J 2025 Phys. Rev. Lett. 134 130401

    [8]

    Elyasi S N, Rossi M A, Genoni M G 2025 Quantum Sci. Technol. 10 025017

    [9]

    Hymas K, Muir J B, Tibben D, van Embden J, Hirai T, Dunn C J, Gómez D E, Hutchison J A, Smith T A, Quach J Q 2025 arXiv: 2501.16541 [quant-ph]

    [10]

    Rinaldi D, Filip R, Gerace D, Guarnieri G 2025 Phys. Rev. A 112 012205

    [11]

    Shaghaghi V, Singh V, Carrega M, Rosa D, Benenti G 2023 Entropy 25 430

    [12]

    Wang L, Liu S Q, Wu F L, Fan H, Liu S Y 2024 Phys. Rev. A 110 042419

    [13]

    Grazi R, Sacco Shaikh D, Sassetti M, Traverso Ziani N, Ferraro D 2024 Phys. Rev. Lett. 133 197001

    [14]

    Rossini D, Andolina G M, Polini M 2019 Phys. Rev. B 100 115142

    [15]

    Le T P, Levinsen J, Modi K, Parish M M, Pollock F A 2018 Phys. Rev. A 97 022106

    [16]

    Binder F C, Vinjanampathy S, Modi K, Goold J 2015 New J. Phys. 17 075015

    [17]

    Campbell S, Deffner S 2017 Phys. Rev. Lett. 118 100601

    [18]

    Rosa D, Rossini D, Andolina G M, Polini M, Carrega M 2020 J. High Energy Phys. 2020 1

    [19]

    Rossini D, Andolina G M, Rosa D, Carrega M, Polini M 2020 Phys. Rev. Lett. 125 236402

    [20]

    Andolina G M, Farina D, Mari A, Pellegrini V, Giovannetti V, Polini M 2018 Phys. Rev. B 98 205423

    [21]

    Ferraro D, Campisi M, Andolina G M, Pellegrini V, Polini M 2018 Phys. Rev. Lett. 120 117702

    [22]

    Andolina G M, Keck M, Mari A, Campisi M, Giovannetti V, Polini M 2019 Phys. Rev. Lett. 122 047702

    [23]

    Farina D, Andolina G M, Mari A, Polini M, Giovannetti V 2019 Phys. Rev. B 99 035421

    [24]

    Crescente A, Carrega M, Sassetti M, Ferraro D 2020 Phys. Rev. B 102 245407

    [25]

    Delmonte A, Crescente A, Carrega M, Ferraro D, Sassetti M 2021 Entropy 23 612

    [26]

    Wang L, Liu S Q, Wu F L, Fan H, Liu S Y 2023 Phys. Rev. A 108 062402

    [27]

    Liu J X, Shi H L, Shi Y H, Wang X H, Yang W L 2021 Phys. Rev. B 104 245418

    [28]

    Verma D, Indrajith V, Sankaranarayanan R 2025 Physica A 659 130352

    [29]

    Ghosh S, Sen A 2022 Phys. Rev. A 105 022628

    [30]

    Rossini D, Andolina G M, Rosa D, Carrega M, Polini M 2020 Phys. Rev. Lett. 125 236402

    [31]

    Francica G 2024 Phys. Rev. A 110 062209

    [32]

    Gangwar K, Pathak A 2024 Adv. Quantum Technol. 7 2400069

    [33]

    Rodriguez R, Ahmadi B, Suárez G, Mazurek P, Barzanjeh S, Horodecki P 2024 New J. Phys. 26 043004

    [34]

    Rodriguez R R, Ahmadi B, Mazurek P, Barzanjeh S, Alicki R, Horodecki P 2023 Phys. Rev. A 107 042419

    [35]

    Hu C K, Qiu J W, Souza P J P, Yuan J H, Zhou Y X, Zhang L B, Chu J, Pan X C, Hu L, Li J, Xu Y, Zhong Y P, Liu S, Yan F, Tan D, Bachelard R, Villas-Boas C J, Santos A C, Yu D P 2022 Quantum Sci. Technol. 7 045018

    [36]

    Ge Y, Yu X, Xin W, Wang Z, Zhang Y, Zheng W, Li S, Lan D, Yu Y 2023 Appl. Phys. Lett. 123 154002

    [37]

    Elghaayda S, Ali A, Al-Kuwari S, Czerwinski A, Mansour M, Haddadi S 2025 Adv. Quantum Technol. 2400651

    [38]

    Dou F Q, Yang F M 2023 Phys. Rev. A 107 023725

    [39]

    Yang D L, Yang F M, Dou F Q 2024 Phys. Rev. B 109 235432

    [40]

    Dou F Q, Wang Y J, Sun J A 2020 Eur. Phys. Lett. 131 43001

    [41]

    Dou F Q, Wang Y J, Sun J A 2022 Front. Phys. 17 31503

    [42]

    Gemme G, Grossi M, Vallecorsa S, Sassetti M, Ferraro D 2024 Phys. Rev. Res. 6 023091

    [43]

    Yang F M, Dou F Q 2024 Phys. Rev. A 109 062432

    [44]

    Lu Z G, Tian G, Lü X Y, Shang C 2025 Phys. Rev. Lett. 134 180401

    [45]

    Patil V P, Kos Z, Ravnik M, Dunkel J 2020 Phys. Rev. Res. 2 043196

    [46]

    Wang L, Liu S Q, Wu F L, Fan H, Liu S Y 2024 Phys. Rev. A 110 062204

    [47]

    Shokri A, Faizi E, Arjmandi M B 2025 Phys. Rev. E 111 064117

    [48]

    Guo Y, Cao L, Zhao J 2025 Phys. Rev. A 111 063520

    [49]

    Joshi J, Mahesh T 2022 Phys. Rev. A 106 042601

    [50]

    Donelli B, Gherardini S, Marino R, Campaioli F, Buffoni L 2025 Phys. Rev. E 111 L062102

    [51]

    Dou F Q, Lu Y Q, Wang Y J, Sun J A 2022 Phys. Rev. B 105 115405

    [52]

    Erdman P A, Andolina G M, Giovannetti V, Noé F 2024 Phys. Rev. Lett. 133 243602

    [53]

    Lu W, Chen J, Kuang L M, Wang X 2021 Phys. Rev. A 104 043706

    [54]

    Yang H Y, Shi H L, Wan Q K, Zhang K, Wang X H, Yang W L 2024 Phys. Rev. A 109 012204

    [55]

    Arjmandi M B, Shokri A, Faizi E, Mohammadi H 2022 Phys. Rev. A 106 062609

    [56]

    Carrasco J, Maze J R, Hermann-Avigliano C, Barra F 2022 Phys. Rev. E 105 064119

    [57]

    Kamin F, Tabesh F, Salimi S, Santos A C 2020 Phys. Rev. E 102 052109

    [58]

    Shi H L, Ding S, Wan Q K, Wang X H, Yang W L 2022 Phys. Rev. Lett. 129 130602

    [59]

    Zhang D, Ma S, Yu Y, Jin G, Chen A 2025 Adv. Quantum Technol. e2500243

    [60]

    Mayo F, Roncaglia A J 2022 Phys. Rev. A 105 062203

    [61]

    Tirone S, Salvia R, Chessa S, Giovannetti V 2025 Phys. Rev. A 111 012204

    [62]

    Yu W L, Zhang Y, Li H, Wei G F, Han L P, Tian F, Zou J 2023 Chin. Phys. B 32 010302

    [63]

    Hovhannisyan K V, Perarnau-Llobet M, Huber M, Acín A 2013 Phys. Rev. Lett. 111 240401

    [64]

    Campaioli F, Pollock F A, Binder F C, Céleri L, Goold J, Vinjanampathy S, Modi K 2017 Phys. Rev. Lett. 118 150601

    [65]

    Wen J, Wen Z, Peng P, Li G Q 2025 Chin. Phys. B 34 100302

    [66]

    Barra F 2019 Phys. Rev. Lett. 122 210601

    [67]

    Hovhannisyan K V, Barra F, Imparato A 2020 Phys. Rev. Res. 2 033413

    [68]

    Chang W, Yang T R, Dong H, Fu L, Wang X, Zhang Y Y 2021 New J. Phys. 23 103026

    [69]

    Carrega M, Crescente A, Ferraro D, Sassetti M 2020 New J. Phys. 22 083085

    [70]

    Zhao F, Dou F Q, Zhao Q 2021 Phys. Rev. A 103 033715

    [71]

    Santos A C, C akmak B, Campbell S, Zinner N T 2019 Phys. Rev. E 100 032107

    [72]

    Ghosh S, Chanda T, Mal S, Sen(De) A 2021 Phys. Rev. A 104 032207

    [73]

    Tacchino F, Santos T F F, Gerace D, Campisi M, Santos M F 2020 Phys. Rev. E 102 062133

    [74]

    Gherardini S, Campaioli F, Caruso F, Binder F C 2020 Phys. Rev. Res. 2 013095

    [75]

    Liu J, Segal D, Hanna G 2019 J. Phys. Chem. C 123 18303

    [76]

    Tabesh F, Kamin F, Salimi S 2020 Phys. Rev. A 102 052223

    [77]

    Hu M L, Gao T, Fan H 2025 Phys. Rev. A 111 042216

    [78]

    Bai S Y, An J H 2020 Phys. Rev. A 102 060201

    [79]

    Liu J, Segal D 2021 arXiv: 2104.06522 [quant-ph]

    [80]

    Zhu G, Chen Y, Hasegawa Y, Xue P 2023 Phys. Rev. Lett. 131 240401

    [81]

    Yang X, Yang Y H, Liu X Z, Jiang J L, Zheng X Z, Fei S M, Luo M X 2024 Cell Rep. Phys. Sci. 5 102300

    [82]

    Liu Z D, Sun Y N, Liu B H, Li C F, Guo G C, Hamedani R S, Lyyra H, Piilo J 2020 Phys. Rev. A 102 062208

    [83]

    Huang X J, Wang K, Xiao L, Gao L, Lin H Q, Xue P 2023 Phys. Rev. A 107 L030201

    [84]

    Allahverdyan A E, Balian R, Nieuwenhuizen T M 2004 Eur. Phys. Lett. 67 565

    [85]

    Ali A, Al-Kuwari S, Hussain M, Byrnes T, Rahim M, Quach J Q, Ghominejad M, Haddadi S 2024 Phys. Rev. A 110 052404

    [86]

    Malavazi A H, Sagar R, Ahmadi B, Dieguez P R 2025 PRX Energy 4 023011

    [87]

    Mojaveri B, Jafarzadeh Bahrbeig R, Fasihi M 2024 Phys. Rev. A 109 042619

    [88]

    Yang X, Yang Y H, Alimuddin M, Salvia R, Fei S M, Zhao L M, Nimmrichter S, Luo M X 2023 Phys. Rev. Lett. 131 030402

    [89]

    Alimuddin M, Guha T, Parashar P 2020 Phys. Rev. E 102 022106

    [90]

    Kamin F, Salimi S, Santos A C 2021 Phys. Rev. E 104 034134

    [91]

    Sarkar A, Chaki P, Ghosh P, Sen U 2025 arXiv: 2505.16851 [quant-ph]

    [92]

    Mondal S, Saha D, Sen U 2025 arXiv: 2507.16610 [quant-ph]

    [93]

    Sun W, Jin Y, Lu G 2024 Phys. Rev. A 109 042422

    [94]

    Wang Y, Huang X, Zhang T 2025 Adv. Quantum Technol. 2400652

    [95]

    Bai G, Gong H, Li B 2024 Eur. Phys. J. Plus 139 1053

    [96]

    Wang Y K, Ge L Z, Zhang T, Fei S M, Gao Y, Wang Z X 2025 Quantum Inf. Process. 24 34

    [97]

    Wang H, Gong H, Li B 2025 Laser Phys. Lett. 22 065204

    [98]

    Wang L, Liu S Q, Wu F L, Fan H, Li N N, Liu S Y 2025 Phys. Rev. A 112 022206

    [99]

    Zhang T, Yang H, Fei S M 2024 Phys. Rev. A 109 042424

    [100]

    Wang Y, Liu H, Fei S M, Zhang T 2025 Adv. Quantum Technol. 2500095

    [101]

    Castellano R, Farina D, Giovannetti V, Acin A 2024 Phys. Rev. Lett. 133 150402

    [102]

    Di Bello G, Farina D, Jansen D, Perroni C, Cataudella V, De Filippis G 2024 Quantum Sci. Technol. 10 015049

    [103]

    Castellano R, Nery R, Simonov K, Farina D 2025 Phys. Rev. A 111 012212

    [104]

    Gyhm J Y, Safránek D, Rosa D 2022 Phys. Rev. Lett. 128 140501

    [105]

    Shi H L, Gan L, Zhang K, Wang X H, Yang W L 2025 arXiv: 2503.02667 [quant-ph]

    [106]

    Giovannetti V, Lloyd S, Maccone L 2003 Phys. Rev. A 67 052109

    [107]

    Deffner S, Lutz E 2013 J. Phys. A: Math. Theor. 46 335302

    [108]

    Campaioli F 2020 arXiv: 2004.08384 [quant-ph]

    [109]

    Zakavati S, Tabesh F T, Salimi S 2021 Phys. Rev. E 104 054117

    [110]

    Imai S, Gühne O, Nimmrichter S 2023 Phys. Rev. A 107 022215

    [111]

    Barra F 2022 Entropy 24 820

    [112]

    Xu H, Li J 2024 arXiv: 2411.04132 [quant-ph]

    [113]

    Seidov S, Mukhin S 2024 Phys. Rev. A 109 022210

    [114]

    Julià-Farré S, Salamon T, Riera A, Bera M N, Lewenstein M 2020 Phys. Rev. Res. 2 023113

    [115]

    Dou F Q, Zhou H, Sun J A 2022 Phys. Rev. A 106 032212

    [116]

    Zhang X, Blaauboer M 2023 Front. Phys. 10 1097564

    [117]

    Zhang W, Wang S, Wu C, Wang G 2023 Phys. Rev. E 107 054125

    [118]

    Canzio A, Cavina V, Polini M, Giovannetti V 2025 Phys. Rev. A 111 022222

    [119]

    Zhang D, Ma S, Yu Y, Jin G, Chen A 2025 Phys. Rev. A 112 022615

    [120]

    Bhattacharyya A, Dongre P, Sen U 2024 arXiv: 2410.00618 [quant-ph]

    [121]

    Zhang D, Ma S, Jiang Y, Yu Y, Jin G, Chen A 2024 Phys. Rev. A 110 032211

    [122]

    Hadipour M, Yousefi N N, Mortezapour A, Miavaghi A S, Haseli S 2025 Sci. Rep. 15 14578

    [123]

    Liu C G, Zhang J T, Ai Q 2025 Phys. Rev. A 112 043705

    [124]

    Li J, Wu N 2025 Phys. Rev. E 111 044118

    [125]

    Zahia A A 2025 Phys. Scr. 100 085403

    [126]

    Catalano A G, Giampaolo S M, Morsch O, Giovannetti V, Franchini F 2024 PRX Quantum 5 030319

    [127]

    Arjmandi M B, Mohammadi H, Saguia A, Sarandy M S, Santos A C 2023 Phys. Rev. E 108 064106

    [128]

    Zhang X L, Song X K, Wang D 2024 Adv. Quantum Technol. 7 2400114

    [129]

    Rahman S, Murugesh S 2024 Phys. Scr. 100 015106

    [130]

    Grazi R, Cavaliere F, Traverso Ziani N, Ferraro D 2025 Symmetry 17 220

    [131]

    Qi S f, Jing J 2025 Phys. Lett. A 530 130124

    [132]

    Saffman M, Walker T G, Mølmer K 2010 Rev. Mod. Phys. 82 2313

    [133]

    Yao Y, Shao X Q 2021 Phys. Rev. E 104 044116

    [134]

    Quach J Q, Munro W J 2020 Phys. Rev. Applied 14 024092

    [135]

    Sen K, Sen U 2021 Phys. Rev. A 104 L030402

    [136]

    Sun P Y, Zhou H, Dou F Q 2024 arXiv: 2412.01442 [quant-ph]

    [137]

    Zahia A A, Abd-Rabbou M, Megahed A M 2025 J. Phys. B: At. Mol. Opt. Phys. 58 065501

    [138]

    Gumberidze M, Kolár M, Filip R 2019 Sci. Rep. 9 19628

    [139]

    García-Pintos L P, Hamma A, Del Campo A 2020 Phys. Rev. Lett. 125 040601

    [140]

    C akmak B 2020 Phys. Rev. E 102 042111

    [141]

    Seah S, Perarnau-Llobet M, Haack G, Brunner N, Nimmrichter S 2021 Phys. Rev. Lett. 127 100601

    [142]

    Caravelli F, Yan B, García-Pintos L P, Hamma A 2021 Quantum 5 505

    [143]

    Kamin F H, Salimi S, Arjmandi M B 2024 Phys. Rev. A 109 022226

    [144]

    Liu S Q, Wang L, Fan H, Wu F L, Liu S Y 2024 Phys. Rev. A 109 042411

    [145]

    Chen Y, Tan J, Lu J, Hao X 2025 Commun. Theor. Phys. 77 065107

    [146]

    Xu K, Zhu H J, Zhang G F, Liu W M 2021 Phys. Rev. E 104 064143

    [147]

    Xu K, Li H G, Li Z G, Zhu H J, Zhang G F, Liu W M 2022 Phys. Rev. A 106 012425

    [148]

    Liu S Q, Wang L, Fan H, Wu F L, Liu S Y 2025 Adv. Quantum Technol. e00504

    [149]

    Santos A C, Saguia A, Sarandy M S 2020 Phys. Rev. E 101 062114

    [150]

    Yao Y, Shao X Q 2022 Phys. Rev. E 106 014138

    [151]

    Centrone F, Mancino L, Paternostro M 2023 Phys. Rev. A 108 052213

    [152]

    Ukhtary M S, Rangkuti C N 2025 Appl. Phys. Lett. 126 034002

    [153]

    Khodadad Z, Mahdian M, Hanna G 2024 J. Chem. Phys. 160 234114

    [154]

    Morrone D, Rossi M A, Smirne A, Genoni M G 2023 Quantum Sci. Technol. 8 035007

    [155]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [156]

    Fanchini F F, Karpat G, C akmak B, Castelano L, Aguilar G, Farías O J, Walborn S, Ribeiro P S, De Oliveira M 2014 Phys. Rev. Lett. 112 210402

    [157]

    Chru´sciński D, Maniscalco S 2014 Phys. Rev. Lett. 112 120404

    [158]

    Luo S, Fu S, Song H 2012 Phys. Rev. A 86 044101

    [159]

    Kamin F, Tabesh F, Salimi S, Kheirandish F, Santos A C 2020 New J. Phys. 22 083007

    [160]

    Li J, Shen H, Yi X 2022 Opt. Lett. 47 5614

    [161]

    Song M L, Li L J, Song X K, Ye L, Wang D 2022 Phys. Rev. E 106 054107

    [162]

    Hadipour M, Haseli S, Dolatkhah H, Rashidi M 2023 Sci. Rep. 13 10672

    [163]

    Tiwari D, Banerjee S 2023 Front. Quantum Sci. Technol. 2 1207552

    [164]

    Mojaveri B, Jafarzadeh B R, Fasihi M A, Babanzadeh S 2023 Sci. Rep. 13 19827

    [165]

    Xu K, Li H G, Zhu H J, Liu W M 2024 Phys. Rev. E 109 054132

    [166]

    Hadipour M, Haseli S, Wang D, Haddadi S 2024 Adv. Quantum Technol. 7 2400115

    [167]

    Mojaveri B, Jafarzadeh B R, Fasihi M A 2024 Phys. Rev. E 110 064107

    [168]

    Luo J T, Li L, Wei H, Jing T, He Z 2024 Laser Phys. Lett. 22 015209

    [169]

    Hao X, Chen Y, Ren T X, Tan J, Wu Y Z 2025 Quantum Inf. Process. 24 235

    [170]

    Bhanja G, Tiwari D, Banerjee S 2024 Phys. Rev. A 109 012224

    [171]

    Cavaliere F, Gemme G, Benenti G, Ferraro D, Sassetti M 2025 Commun. Phys. 8 76

    [172]

    Zhao S C, Zhao Z R, Zhuang N Y 2025 Phys. Rev. E 112 024129

    [173]

    Zhao S C, Luo L, Zhuang N Y 2025 arXiv: 2508.02772 [quant-ph]

    [174]

    Basu R, Chakraborty A, Badhani H, Alimuddin M, Bhattacharya S 2025 Phys. Rev. A 111 032416

    [175]

    Tiwari D, Bose B, Banerjee S 2025 J. Chem. Phys. 162 114104

    [176]

    De Pasquale A, Yuasa K, Giovannetti V 2017 Phys. Rev. A 96 012316

    [177]

    Gherardini S, Smirne A, Müller M M, Caruso F 2019 Proceedings 12 11

    [178]

    Smerzi A 2012 Phys. Rev. Lett. 109 150410

    [179]

    Suri N, Binder F C, Muralidharan B, Vinjanampathy S 2018 Eur. Phys. J. Spec. Top. 227 203

    [180]

    Müller M M, Gherardini S, Smerzi A, Caruso F 2016 Phys. Rev. A 94 042322

    [181]

    Schäfer F, Herrera I, Cherukattil S, Lovecchio C, Cataliotti F S, Caruso F, Smerzi A 2014 Nat. Commun. 5 3194

    [182]

    Mitchison M T, Goold J, Prior J 2021 Quantum 5 500

    [183]

    Hotta M, Ikeda K 2025 Quantum Inf. Process. 24 186

    [184]

    Santos A C 2021 Phys. Rev. E 103 042118

    [185]

    Song W L, Liu H B, Zhou B, Yang W L, An J H 2024 Phys. Rev. Lett. 132 090401

    [186]

    Bruzewicz C D, Chiaverini J, McConnell R, Sage J M 2019 Appl. Phys. Rev. 6 021314

    [187]

    Maillette de Buy Wenniger I, Thomas S E, Maffei M, Wein S C, Pont M, Belabas N, Prasad S, Harouri A, Lemaıtre A, Sagnes I, Somaschi N, Auff`eves A, Senellart P 2023 Phys. Rev. Lett. 131 260401

    [188]

    Adams C S, Pritchard J D, Shaffer J P 2019 J. Phys. B 53 012002

  • [1] HE Zhi, LUO Jiatao, WEI He. Protection of phase estimation precision based on continuous null-result measurements. Acta Physica Sinica, doi: 10.7498/aps.75.20251341
    [2] KONG Junran, MAO Mang, LIU Huan, WANG Chen. Quantum heat transport in nonequilibrium anisotropic Dicke model. Acta Physica Sinica, doi: 10.7498/aps.74.20251007
    [3] WANG Guangjie, SONG Xueke, YE Liu, WANG Dong. Review of quantum resource characteristics in three-flavor neutrino oscillations. Acta Physica Sinica, doi: 10.7498/aps.74.20250029
    [4] Lai Hong, Ren Li, Huang Zhong-Rui, Wan Lin-Chun. Quantum network communication resource optimization scheme based on multi-scale entanglement renormalization ansatz. Acta Physica Sinica, doi: 10.7498/aps.73.20241382
    [5] Wang Dong-Sheng. Universal quantum computing models: a perspective of resource theory. Acta Physica Sinica, doi: 10.7498/aps.73.20240893
    [6] Zhu Jia-Li, Cao Yuan, Zhang Chun-Hui, Wang Qin. Optimal resource allocation in practical quantum key distribution optical networks. Acta Physica Sinica, doi: 10.7498/aps.72.20221661
    [7] Quan Hai-Tao, Dong Hui, Sun Chang-Pu. Theoretical and experiments of mesoscopic statistical thermodynamics. Acta Physica Sinica, doi: 10.7498/aps.72.20231608
    [8] Huang Bin-Yuan, He Zhi, Chen Yu. Charging performance of quantum batteries based on intensity-dependent Dicke model. Acta Physica Sinica, doi: 10.7498/aps.72.20230578
    [9] Chen Zi-Jie, Pan Xiao-Xuan, Hua Zi-Yue, Wang Wei-Ting, Ma Yu-Wei, Li Ming, Zou Xu-Bo, Sun Lu-Yan, Zou Chang-Ling. Advances in quantum error correction based on superconducting quantum systems. Acta Physica Sinica, doi: 10.7498/aps.71.20221824
    [10] Pei Si-Hui, Song Zi-Xuan, Lin Xing, Fang Wei. Interaction between light and single quantum-emitter in open Fabry-Perot microcavity. Acta Physica Sinica, doi: 10.7498/aps.71.20211970
    [11] Chen Yi-Peng, Liu Jing-Yang, Zhu Jia-Li, Fang Wei, Wang Qin. Application of machine learning in optimal allocation of quantum communication resources. Acta Physica Sinica, doi: 10.7498/aps.71.20220871
    [12] Lan Kang, Du Qian, Kang Li-Sha, Jiang Lu-Jing, Lin Zhen-Yu, Zhang Yan-Hui. The electron transfer properties of an open double quantum dot based on a quantum point contact. Acta Physica Sinica, doi: 10.7498/aps.69.20191718
    [13] Shen Jue, Liu Cheng-Zhou, Zhu Ning-Ning, Tong Yi-Nuo, Yan Chen-Cheng, Xue Ke-Lei. Thermodynamics and its quantum correction of non-commutative Schwarichild black hole. Acta Physica Sinica, doi: 10.7498/aps.68.20191054
    [14] You Bo, Cen Li-Xiang. Phenomena of limit cycle oscillations for non-Markovian dissipative systems undergoing long-time evolution. Acta Physica Sinica, doi: 10.7498/aps.64.210302
    [15] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. Single N-dimensional quNit quantum secret sharing. Acta Physica Sinica, doi: 10.7498/aps.55.3255
    [16] Wang Gang-Zhu, Wang Ji-Long. Quantum thermodynamical properties of the slowly changing nonstationary Kerr-Newman black hole. Acta Physica Sinica, doi: 10.7498/aps.53.1669
    [17] GAO TAO, WANG HONG-YAN, YI YOU-GEN, TAN MING-LIANG, ZHU ZHENG-HE, SUN YING, WANG XIAO-LIN, FU YI-BEI. ab initio CALCULATION OF THE POTENTIAL ENERGY FUNCTION AND THERMODYNAMIC FUNCTIONS FOR GROUND STATE X5Σ- OF PuO. Acta Physica Sinica, doi: 10.7498/aps.48.2222
    [18] XIONG YUAN-SHENG, YI LIN, YAO KAI-LUN. THERMODYNAMIC PROPERTIES OF QUANTUM SHERRI-NGTON-KIRKPATRICK SPIN GLASS MODEL——ANISOTROPY AND MAGNETIC EFFECTS. Acta Physica Sinica, doi: 10.7498/aps.43.2052
    [19] LI JI-SHI, ZHANG SI-YUAN, ZHANG SI-JUN. QUANTUM THEORY OF GALVANOMAGNETIC PHENOMENA IN ELECTRON-PHONON SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.21.1638
    [20] CHANG TSUNG-SUI. A NOTE ON THE ERGODIC THEOREM FOR QUANTIZED SYSTEMS. Acta Physica Sinica, doi: 10.7498/aps.14.400
Metrics
  • Abstract views:  12
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  12 December 2025
  • /

    返回文章
    返回
    Baidu
    map