搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多种诊断方法的氮与氩氮混合等离子体中性气体温度

安彦霖 赵明亮 罗倩 高飞 王友年

引用本文:
Citation:

基于多种诊断方法的氮与氩氮混合等离子体中性气体温度

安彦霖, 赵明亮, 罗倩, 高飞, 王友年

Multiple diagnostic techniques measured neutral gas temperatures in N2 plasma and Ar-N2 mixed plasma

AN Yanlin, ZHAO Mingliang, LUO Qian, GAO Fei, WANG Younian
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 低温感应耦合射频等离子体作为半导体制造中的关键等离子体源, 其中性气体温度通过调控化学反应动力学、活性自由基分布以及等离子体-表面相互作用, 对高质量芯片制造工艺具有重要影响. 本文通过光谱法、布拉格光栅和光纤传感测温等3种测温手段, 系统研究了氮气以及氮氩混合等离子体在不同射频功率、气体压力和气体组分条件下的中性气体温度(Tg)的变化规律. 另外, 还结合Langmuir探针测量的电子密度、电子温度、电子能量概率函数以及整体模型模拟, 分析了中性气体加热的物理机制. 结果表明, 当射频功率增大时, 耦合到等离子体的能量增大, 电离反应增强, 电子-中性粒子之间的碰撞过程和能量传递增大, 使Tg呈单调递增趋势. 而当气压升高初期, 电子密度和背景气体密度增大共同提升了加热效率, Tg快速上升, 但在气压超过3 Pa后, 电子平均自由程缩短, 电子密度下降, 而背景气体密度持续增大, 因而导致Tg 增大变缓. 在氮/氩混合体系放电中, 氩气比例增大显著提高了Tg的上升速率, 这是由于随着氩气比例增大, 高能电子比例和电子密度上升, 增强了电离和中性气体加热, 同时氩亚稳态原子通过 Penning过程提高了氮激发态粒子密度, 并促使氮分子向高能级激发, 进一步加热气体. 此外, 研究发现纯氮等离子体的径向温度分布在轴向高度增大时呈现由抛物线形向马鞍形的转变, 这是因为离线圈越近, 受到电磁场的影响电子碰撞激发反应越强. 研究还发现了径向边缘处的Tg随气压的升高几乎不发生变化, 这是由于当气压不断升高时, 线圈下方的电子很难运动到径向边缘处与中性粒子发生碰撞, 从而限制了边缘中性粒子的加热.
    Low-temperature inductively coupled radio-frequency plasma is a key plasma source in semiconductor fabrication, where the neutral gas temperature (Tg) is one of the critical parameters influencing chemical reactions and plasma characteristics. Precise control of Tg significantly influences processes such as thin-film deposition and reactive ion etching, with its synergistic interaction with plasma parameters (ne, Te) often determining process outcomes. Consequently, a thorough understanding of the evolution of Tg and its correlation with discharge parameters has become a critical issue for optimizing semiconductor manufacturing processes. To achieve more accurate measurements of neutral gas temperature, this work employs three temperature measurement techniques: spectroscopy, Bragg grating, and fiber optic sensing. These methods are used to systematically investigate the variation patterns of neutral gas temperature (Tg) in nitrogen plasma and nitrogen-argon mixed plasma under different radio-frequency power, gas pressure, and gas composition conditions. To elucidate the gas heating mechanism, this work combines Langmuir probe measurements of electron density, electron temperature, electron energy probability distribution with a global model simulation. The results show that as the RF power increases, the energy coupled to the plasma increases, the ionization reaction is enhanced, and the collision process and energy transfer between electrons and neutral particles increase, resulting in a monotonically increasing trend of Tg. When gas pressure initially increases, both electron density and background gas density rise together, enhancing heating efficiency and driving rapid Tg growth. However, beyond 3 Pa, electron mean free path shortens and electron density declines. In contrast, background gas density continues to increase, leading to slower Tg growth. In nitrogen/argon mixed system discharges, increasing the argon proportion significantly enhances the rate of Tg increase. This occurs because a higher argon ratio elevates the proportion of high-energy electrons and electron density, thereby strengthening ionization and neutral gas heating. At the same time, argon metastable atoms enhance the density of excited nitrogen particles through the Penning process, which promotes nitrogen molecular excitation to higher energy levels and further heats the gas. Additionally, we observe that the radial temperature distribution in pure nitrogen plasma shifts from parabolic to saddle-type with axial height increasing, due to intensified electron collision excitation near the coil under electromagnetic field effects. In this study, it is also found that the glass transition temperature at the radial edge remains virtually unchanged as atmospheric pressure increases. This is because, as pressure continues to rise, electrons beneath the coil struggle to migrate to the radial edge to collide with neutral particles, thereby limiting the heating of edge neutral particles.
  • 图 1  ICP中性气体温度多手段测量实验装置

    Fig. 1.  ICP neutral gas temperature multi-method measurement experimental apparatus.

    图 2  气压为 1 Pa, 气体流量为50 mL/min (标准状况)时, 腔室中心处氮气中性气体温度随功率的变化 (a)光纤测温、布拉格光栅、发射光谱测量方法对比; (b)模拟结果

    Fig. 2.  Temperature of nitrogen neutral gas at the center of the chamber as a function of power at a pressure of 1 Pa and gas flow rate of 50 mL/min (standard condition): (a) Comparison of three measurement methods of fiber optic temperature measurement, Bragg grating, and emission spectroscopy; (b) simulation results.

    图 3  气压为1 Pa, 气体流量为50 mL/min (标准状况)时, 腔室中心处氮气电子密度和电子温度随功率的变化 (a), (c) 探针测量结果; (b), (d) 模拟结果

    Fig. 3.  Nitrogen electron density and electron temperature at the center of the chamber as a function of power at a pressure of 1 Pa and gas flow rate of 50 mL/min (standard condition): (a), (c) Probe measurement results; (b), (d) simulation results.

    图 4  气压为 1 Pa, 气体流量为50 mL/min (标准状况) 时, 纯氮气放电的EEPF随功率的变化

    Fig. 4.  EEPF of pure nitrogen discharge as a function of power at a pressure of 1 Pa and gas flow rate of 50 mL/min (standard condition).

    图 5  功率为600 W, 气体流量为50 mL/min (标准状况)时, 腔室中心处氮气中性气体温度随气压的变化 (a) 光纤测温、布拉格光栅、发射光谱测量方法对比; (b) 电子密度; (c) 电子温度; (d) EEPF

    Fig. 5.  Temperature of nitrogen neutral gas at the center of the chamber as a function of pressure at a power of 600 W and gas flow rate of 50 mL/min (standard condition): (a) Comparison of measurement methods of fiber optic temperature measurement, Bragg grating, and emission spectroscopy; (b) electron density; (c) electron temperature; (d) EEPF.

    图 6  功率为300 W, 气压为1 Pa, 气体流量为70 mL/min (标准状况)时, 腔室中心处氮气中性气体温度随氩含量的变化 (a) 光纤测温、布拉格光栅、发射光谱测量方法对比; (b) 电子密度; (c) 电子温度; (d) EEPF

    Fig. 6.  Temperature of nitrogen neutral gas at the center of the chamber as a function of argon content at a power of 300 W, a pressure of 1 Pa, and gas flow rate of 70 mL/min (standard condition): (a) Comparison of measurement methods of fiber optic temperature measurement, Bragg grating, and emission spectroscopy; (b) electron density; (c) electron temperature; (d) EEPF.

    图 7  固定气压为1 Pa、气体流量为50 mL/min (标准状况)时, 纯氮气放电中在不同高度不同功率下的Tg径向分布特征 (a) 30 mm; (b) 50 mm; (c) 70 mm; (d) 不同轴向高度、不同功率条件下的温度极差趋势图

    Fig. 7.  Under fixed gas pressure of 1 Pa and gas flow rate of 50 mL/min (standard condition) the radial distribution characteristics of Tg during pure nitrogen discharge at different power levels at different height: (a) 30 mm; (b) 50 mm; (c) 70 mm; (d) temperature gradient trend diagram under varying axial heights and power conditions.

    图 8  固定功率为 300 W、气体流量为50 mL/min(标准状况)时, 纯氮气放电中在不同高度不同气压下的 Tg径向分布特征 (a) 30 mm; (b) 50 mm; (c) 70 mm; (d) 不同轴向高度、不同功率条件下的温度极差趋势图

    Fig. 8.  At a fixed power of 300 W and gas flow rate of 50 mL/min (standard condition), the radial distribution characteristics of Tg under different gas pressures during pure nitrogen discharge at different height: (a) 30 mm; (b) 50 mm; (c) 70 mm; (d) temperature gradient trend diagram under varying axial heights and power conditions.

    表 1  模型中考虑的氮相关反应及系数

    Table 1.  Nitrogen-related reactions and coefficients considered in the model.

    编号反应表达式反应系数/(cm3·s–1)文献
    1$ \text{e}+{\text{N}}_{2}\rightarrow \text{N}_{2}^{+}+2\text{e} $$ 7.76\times {10}^{-9}T_{\text{e}}^{0.79}\text{exp}(-16.75/{T}_{\text{e}}) $[43]
    2$ \text{e}+\text{N}\rightarrow {\text{N}}^{+}+2\text{e} $$ 3.87\times {10}^{-9}T_{\text{e}}^{0.86}\text{exp}(-14.62/{T}_{\text{e}}) $[43]
    3$ \text{e}+{\text{N}}_{2}\rightarrow {\text{N}}^{+}+\text{N}+2\text{e} $$ 2.90\times {10}^{-9}T_{\text{e}}^{0.72}\text{exp}(-29.71\text{/}{T}_{\text{e}}) $[44]
    4$ \text{e}+{\text{N}}_{2}\rightarrow \text{N}+\text{N}+\text{e} $$ 2.15\times {10}^{-8}\text{exp}(-14.39/{T}_{\text{e}}) $[43]
    5$ \text{e}+{\text{N}}_{2}\rightarrow {\text{N}}_{2}\left(\text{A}\right)+\text{e} $$ 8.06\times {10}^{-10}T_{\text{e}}^{-0.306}\text{exp}(-8.87/{T}_{\text{e}}) $[43]
    6$ \text{e}+{\text{N}}_{2}\rightarrow {\text{N}}_{2}\left(\text{B}\right)+\text{e} $$ 1.56\times {10}^{-8}T_{\text{e}}^{-0.52}\text{exp}(-9.16/{T}_{\text{e}}) $[43]
    7$ \text{e}+{\text{N}}_{2}\rightarrow {\text{N}}_{2}\left({a}^{\prime} \right)+\text{e} $$ 6.6\times {10}^{-9}T_{\text{e}}^{-0.66}\text{exp}(-11.05/{T}_{\text{e}}) $[43]
    8$ \text{e}+\text{N}_{2}^{+}\rightarrow \text{N}+\text{N} $$ 4.8\times {10}^{-7}\left(0.026/{T}_{\text{e}}\right) $[45]
    9$ {\text{N}}_{2}\left(\text{A}\right)+{\text{N}}_{2}\left({a}^{\prime} \right)\rightarrow \text{N}_{2}^{+}+{\text{N}}_{2}+\text{e} $$ 3.2\times {10}^{-12} $[46]
    10$ {\text{N}}_{2}\left({a}^{\prime} \right)+{\text{N}}_{2}\left({a}^{\prime} \right)\rightarrow \text{N}_{2}^{+}+{\text{N}}_{2}+\text{e} $$ 5.0\times {10}^{-11} $[47]
    11$ {\text{N}}_{2}\left(\text{A}\right)+\text{N}\rightarrow {\text{N}}_{2}+\text{N} $$ 2.0\times {10}^{-12} $[44]
    12$ {\text{N}}_{2}\left(\text{A}\right)+{\text{N}}_{2}\rightarrow {\text{N}}_{2}+{\text{N}}_{2} $$ 3.0\times {10}^{-18} $[48]
    13$ {\text{N}}_{2}\left(\text{A}\right)+{\text{N}}_{2}\left(\text{A}\right)\rightarrow {\text{N}}_{2}\left(\text{B}\right)+{\text{N}}_{2} $$ 7.7\times {10}^{-11} $[47]
    14$ {\text{N}}_{2}\left(\text{B}\right)+{\text{N}}_{2}\rightarrow {\text{N}}_{2}+{\text{N}}_{2} $$ 1.5\times {10}^{-12} $[47]
    15$ {\text{N}}_{2}\left({a}^{\prime} \right)+{\text{N}}_{2}\rightarrow {\text{N}}_{2}\left(\text{B}\right)+{\text{N}}_{2} $$ 1.9\times {10}^{-13} $[49]
    16$ \text{N}+\text{N}+\text{N}\rightarrow {\text{N}}_{2}+\text{N} $$ 1.0\times {10}^{-32} $(cm6·s–1)[50]
    17$ {\text{N}}_{2}\left(\text{B}\right)\rightarrow {\text{N}}_{2}\left(\text{A}\right)+\text{hν} $$ 2.0\times {10}^{-5} $[51]
    注: 其中电子温度用电子伏(eV)为单位
    下载: 导出CSV
    Baidu
  • [1]

    Iliopoulos E, Adikimenakis A, Dimakis E, Tsagaraki K, Konstantinidis G, Georgakilas A 2005 J. Cryst. Growth 278 426Google Scholar

    [2]

    Osaka J, Senthil Kumar M, Toyoda H, Ishijima T, Sugai H, Mizutani T 2007 Appl. Phys. Lett. 90 172114Google Scholar

    [3]

    Kim K Y, Lee H C, Chung C W 2022 Plasma Sources Sci. Technol. 31 105007Google Scholar

    [4]

    Itagaki N, Iwata S, Muta K, Yonesu A, Kawakami S, Ishii N, Kawai Y 2003 Thin Solid Films 435 259Google Scholar

    [5]

    Agarwal S, Hoex B, van de Sanden M C M, Maroudas D, Aydil E S 2003 Appl. Phys. Lett. 83 4918Google Scholar

    [6]

    高飞, 毛明, 丁振峰, 王友年 2008 57 5123Google Scholar

    Gao F, Mao M, Ding Z F, Wang Y N 2008 Acta Phys. Sin. 57 5123Google Scholar

    [7]

    Hebner G A 1996 J. Appl. Phys. 80 2624Google Scholar

    [8]

    Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol. 13 691Google Scholar

    [9]

    杨文斌, 周江宁, 李斌成, 邢廷文 2017 66 095201Google Scholar

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar

    [10]

    潘子峰, 陈仙辉, 王斌, 夏维东 2021 70 085201Google Scholar

    Pan Z H, Chen X H, Wang C, Xia W D 2021 Acta Phys. Sin. 70 085201Google Scholar

    [11]

    Sing H, Coburn J W, Graves D B 2001 J. Vac. Sci. Technol. A 19 718Google Scholar

    [12]

    Wang Y J, Huang J W, Zhang Q Z, Zhang Y R, Gao F, Wang Y N 2021 Chin. Phys. B 30 095205 (in Chinese)Google Scholar

    [13]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467Google Scholar

    [14]

    Ostrikov K N, Denysenko I B, Tsakadze E L, Xu S, Storer R G 2002 J. Appl. Phys. 92 4935Google Scholar

    [15]

    Hash D B, Bose D, Rao M V V S, Cruden B A, Meyyappan M, Sharma S P 2001 J. Appl. Phys. 90 2148Google Scholar

    [16]

    Hebner G A, Miller P A 2000 J. Appl. Phys. 87 8304Google Scholar

    [17]

    Hebner G A 2001 J. Appl. Phys. 89 900Google Scholar

    [18]

    Sing H, Coburn J W, Graves D B 2001 J. Vac. Sci. Technol. A 19 718Google Scholar

    [19]

    Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol. 13 691.Google Scholar

    [20]

    Malyshev M V, Donnelly V M, Downey S W, Colonell J I, Layadi N 2000 J. Vac. Sci. Technol. A 18 849Google Scholar

    [21]

    Kiehlbauch M W, Graves D B 2001 J. Appl. Phys. 89 2047Google Scholar

    [22]

    Cruden B A, Rao M V V S, Sharma S P, Meyyappan M 2002 Appl. Phys. Lett. 81 990Google Scholar

    [23]

    Cruden B A, Rao M V V S, Sharma S P, Meyyappan M 2002 J. Appl. Phys. 91 8955Google Scholar

    [24]

    Schabel M J, Donnelly V M, Kornblit A, Tai W W 2002 J. Vac. Sci. Technol. A 20 555Google Scholar

    [25]

    Palmero A, Cotrino J, Barranco A, Gonzalez-Elipe A R 2002 Phys. Plasmas 9 358Google Scholar

    [26]

    Britun N, Gaillard M, Ricard A, Kim Y M, Kim K S, Han J G 2007 J. Phys. D: Appl. Phys. 40 1022Google Scholar

    [27]

    Han J, Park W, Kim J, Lim K H, Lee G H, In S, Park J, Oh S J, Nam S K, Sung D Y, Moon S Y 2023 Spectrochim. Acta A 302 123389

    [28]

    Du P C, Zhou F J, Zhao K 2022 Appl. Phys. 132 043302Google Scholar

    [29]

    Zhang L 2021 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [30]

    Lv T 2023 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [31]

    佟磊, 赵明亮, 张钰如, 宋远红, 王友年 2024 73 045201Google Scholar

    Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2024 Acta Phys. Sin. 73 045201Google Scholar

    [32]

    Wen D Q 2018 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [33]

    Gudmundsson J T, Kouznetsov I G, Patel K K, Lieberman M A 2001 J. Phys. D: Appl. Phys. 34 1100Google Scholar

    [34]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [35]

    Bakowski B, Hancock G, Peverall R, Ritchie G A D, Thornton L J 2004 J. Phys. D: Appl. Phys. 37 2064Google Scholar

    [36]

    Tuszewski M 2006 J. Appl. Phys. 100 05330

    [37]

    Shimada M, Tynan G R, Cattolica R 2006 J. Vac. Sci. Technol. A 24 1878Google Scholar

    [38]

    Britun N, Gaillard M, Ricard A, Kim Y M, Kim K S, Han J G 2007 J. Phys. D: Appl. Phys. 40 1022Google Scholar

    [39]

    Bol’shakov A A, Cruden B A, Sharma S P 2004 Plasma Sources Sci. Technol. 13 691Google Scholar

    [40]

    Biloiu C, Sun X, Harvey Z, Scime E 2007 J. Appl. Phys. 101 073303Google Scholar

    [41]

    Linss V, Kupfer H, Peter S, Richter F 2005 Surf. Coat. Technol. 200 1696Google Scholar

    [42]

    Thorsteinsson E G, Gudmundsson J T 2009 Plasma Sources Sci. Technol. 18 045001Google Scholar

    [43]

    Gudmundsson J T 2005 Report No. RH-09-2005 (University of Iceland

    [44]

    Sode M, Jacob W, Schwarz-Selinger T, Kersten H 2015 J. Appl. Phys. 117 083303

    [45]

    Levaton J, Amorim J, Souza A R, Franco D, Ricard A 2002 J. Phys. D: Appl. Phys. 35 689Google Scholar

    [46]

    Loureiro J 1997 J. Phys. D: Appl. Phys. 30 2320Google Scholar

    [47]

    Guerra V, Loureiro J M A H 1997 Plasma Sources Sci. Technol. 6 361Google Scholar

    [48]

    Pejovic M M, Zivanovic E N, Pejovic M M 2004 J. Phys. D: Appl. Phys. 37 200Google Scholar

    [49]

    Piper L G 1987 J. Chem. Phys. 87 1625

    [50]

    Gordiets B F, Ferreira C M, Guerra V L, Loureiro J M A H, Nahorny J, Pagnon D, Touzeau M, Vialle M 1995 IEEE Trans. Plasma Sci. 23 750Google Scholar

    [51]

    Piper L G 1989 J. Chem. Phys. 91 864Google Scholar

    [52]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

    [53]

    Kim K Y, Kim J H, Chung C W, Lee H C 2022 Plasma Sources Sci. Technol. 31 105007Google Scholar

    [54]

    Song M A, Lee Y W, Chung T H 2011 Phys. Plasmas 18 023504Google Scholar

    [55]

    Luo Q, Lv T, Wang P Y, Zhou D P, Gao F, Wang Y N 2025 J. Vac. Sci. Technol. A 43 043006Google Scholar

  • [1] 张宇, 罗倩, 黄高煌, 高飞, 王友年. 射频感应耦合远端氢等离子体源的二维流体模拟.  , doi: 10.7498/aps.75.20251202
    [2] 袁泓, 尹相辉, 吕波, 金仡飞, BaeCheonho, 张洪明, 符佳, 刘海庆, 赵海林, 臧庆, 王福地, 向东. EAST上基于平衡中性束注入方法的L模等离子体自发扭矩分布实验研究.  , doi: 10.7498/aps.74.20241462
    [3] 张晖, 韩宁, 孟显, 曹进文, 孙文进, 李梦天, 耿金越, 黄河激. 氩气感应耦合等离子体非平衡特性分析.  , doi: 10.7498/aps.74.20251186
    [4] 陈忠琪, 钟安, 戴栋, 宁文军. 屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响.  , doi: 10.7498/aps.71.20220421
    [5] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究.  , doi: 10.7498/aps.70.20201610
    [6] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟.  , doi: 10.7498/aps.68.20190865
    [7] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究.  , doi: 10.7498/aps.64.064213
    [8] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器.  , doi: 10.7498/aps.64.224221
    [9] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究.  , doi: 10.7498/aps.62.124207
    [10] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响.  , doi: 10.7498/aps.62.115202
    [11] 蒋相站, 刘永新, 毕振华, 陆文琪, 王友年. 双频容性耦合等离子体密度径向均匀性研究.  , doi: 10.7498/aps.61.015204
    [12] 孙 恺, 辛 煜, 黄晓江, 袁强华, 宁兆元. 60MHz电容耦合等离子体中电子能量分布函数特性研究.  , doi: 10.7498/aps.57.6465
    [13] 高 飞, 毛 明, 丁振峰, 王友年. 射频感应耦合Ar-N2等离子体物理特性的Langmuir探针测量及理论研究.  , doi: 10.7498/aps.57.5123
    [14] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究.  , doi: 10.7498/aps.57.1796
    [15] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究.  , doi: 10.7498/aps.56.977
    [16] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响.  , doi: 10.7498/aps.55.5311
    [17] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究.  , doi: 10.7498/aps.54.1653
    [18] 黄 松, 宁兆元, 辛 煜, 甘肇强. CF4气体ICP等离子体中的双温电子特性.  , doi: 10.7498/aps.53.3394
    [19] 龚学余, 凌 球, 石秉仁, 龙永兴. 在Bohm模式下氘氚燃烧的等离子体温度分布.  , doi: 10.7498/aps.48.2266
    [20] 程成, 孙威. 溴化亚铜激光气体温度的径向分布与时间变化.  , doi: 10.7498/aps.42.1779
计量
  • 文章访问数:  608
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-10
  • 修回日期:  2025-10-11
  • 上网日期:  2025-10-15

/

返回文章
返回
Baidu
map