Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The study of electron impact ionization of C, N, and O at the solar radiation/convection zone boundary

HOU Yong LUO Qingbo LIANG Xin ZENG Jiaolong YUAN Jianmin

Citation:

The study of electron impact ionization of C, N, and O at the solar radiation/convection zone boundary

HOU Yong, LUO Qingbo, LIANG Xin, ZENG Jiaolong, YUAN Jianmin
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The boundary region between the solar radiation zone and the convection zone (T ~ 180 eV, ne ~ 9×1022 cm-3) is a critical interface where energy transport in the solar interior transitions from radiationdominated to convection-dominated regimes. This region also serves as a natural laboratory for studying hot dense plasma. The physical properties of this zone are essential for the reliability of stellar evolution models and the stability of energy transport mechanisms. One of major unresolved issue is how electron collision ionization affects the density of free electrons and radiation properties in this plasma, while accurately describing the impact of hot-dense environments on electron impact ionization (EII) (such as electron screening, ion correlation). To fill this gap, we systematically calculate EII cross sections for C, N, and O ions under realistic solar boundary conditions, with a focus on hot-dense environment impacts. We develop a novel computational framework that merges hot-dense environment effects into atomic structure calculations: the Flexible Atomic Code (FAC) for atomic structure is combined with the Hypernetted-Chain (HNC) approximation to capture electron–electron, electron–ion and ion-ion correlations, enabling self-consistent treatment of electron screening and ion correlation. Atomic wave functions are derived by solving the Dirac equation within the ion-sphere model, using a modified central potential that incorporates both free-electron screening and ion–ion interactions. EII cross sections are then computed via the Distorted-Wave (DW) approximation in FAC. The results demonstrate that hot-dense environment effects significantly enhance the electron-impact ionization cross sections of C, N, and O compared to those calculated under the free-atom model. Additionally, a notable reduction in the ionization threshold energy is observed. These effects are attributed to the overlap of atomic potentials due to strong ion coupling and the shift in bound-state energy levels caused by free-electron screening. For instance, under solar boundary conditions, the ionization cross section of C+ increased by up to 50%, with the ionization threshold decreasing from about 24 eV (isolated) to 18 eV (with screening). Similar enhancements were observed for nitrogen and oxygen ions across various charge states. By providing updated ionization cross sections for C, N, and O ions under realistic solar interior conditions, this work offers essential parameters for improving radiation transport models, ionization balance calculations, and equation-of-state models in stellar interiors. The results underscore the necessity of including hot-dense environment effects in atomic process calculations for hot dense plasmas, with implications for astrophysics and inertial confinement fusion research.
  • [1]

    Guenther D B, Demarque P, Kim Y C, Pinsonneault M H 1992 ApJ 387 372

    [2]

    Bahcall J N, Ulrich R K 1988 Rev. Mod. Phys. 60 297

    [3]

    Basu S, Grevesse N, Mathis S, Turck-Chieze S 2015 Space Sci. Rev. 196 49

    [4]

    Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, et al. 2015 Nature 517 56

    [5]

    Fogle M, Bahati E M, Bannister M E, Vane C R, Loch S D, Pindzola M S, Ballance C P, Thomas R D, Zhaunerchyk V, Bryans P, Mitthumsiri W, Savin D W 2008 Astrophys. J. Suppl. Ser. 175 543

    [6]

    Woodruff P R, Hublet M C, Harrison M F A, Brook E 1978 J. Phys. B: At. Mol. Opt. Phys. 11 L679

    [7]

    Falk R A, Stefani G, Camilloni R, Dunn G H, Phaneuf R A, Gregory D C, Crandall D H 1983 Phys. Rev. A 28 91

    [8]

    Loch S D, Witthoeft M, Pindzola M S, Bray I, Fursa D V, Fogle M, Schuch R, Glans P, Ballance C P, Griffin D C 2005 Phys. Rev. A 71 012716

    [9]

    Loch S D, Colgan J, Pindzola M S, Westermann M, Scheuermann F, Aichele K, Hathiramani D, Salzborn E 2003 Phys. Rev. A 67 042714

    [10]

    Alna’washi G A, Aryal N B, Baral K K, Thomas C M, Phaneuf R A, 2014 J. Phys. B: At. Mol. Opt. Phys. 47 135203

    [11]

    Ludlow J A, Ballance C P, Loch S D, Pindzola M S, Griffin D C, 2009 Phys. Rev. A 79 032715

    [12]

    Bray I, McNamara K, Fursa D V 2015 Phys. Rev. A 92 022705

    [13]

    Fontes C J, Sampson D H, Zhang H L 1993 Phys. Rev. A 48 1975

    [14]

    Kim Y K, Rudd M E 1994 Phys. Rev. A 50 3954

    [15]

    Ma L L, Zhang S P, Zhang F J, Li M J, Jiang J, Ding X B, Jie L Y, Zhang D H, Dong C Z 2024 Acta Phys. Sin. 73 136 (in Chinese) [马莉莉,张世平,张芳军,李麦娟,蒋军,丁晓彬,颉录有, 张登红,董晨钟 2005 73 136]

    [16]

    Kritcher A L, Swift D C, Döppner T, Bachmann B, Benedict L X, Collins G W, et al. 2020 Nature 584 51

    [17]

    Giammichele N, Charpinet S, Fontaine G, Brassard P, Green E M, Van Grootel V, et al. 2018 Nature 554 73

    [18]

    Bethkenhagen M, Witte B B L, Schörner M, Röpke G, Döppner T, Kraus D, Glenzer S H, Sterne P A, Redmer R 2020 Phys. Rev. Res. 2 023260

    [19]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, et al. 2014 Nature 506 343

    [20]

    Seddon E A, Clarke J A, Dunning D J, Masciovecchio C, Milne C J, Parmigiani F, Rugg D, Spence J C H, Thompson N R, Ueda K, Vinko S M, Wark J S, Wurth W 2017 Rep. Prog. Phys. 80 115901

    [21]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, et al. 2012 Nature 482 59

    [22]

    Ciricosta O, Vinko S M, Chung H K, Cho B I, Brown C R D, Burian T, et al. 2012 Phys. Rev. Lett. 109 065002

    [23]

    Cho B I, Engelhorn, K Vinko S M, Chung, H K, Ciricosta O, Rackstraw D S, et al. 2012 Phys. Rev. Lett. 109 245003

    [24]

    Van den Berg Q Y, Fernandez-Tello E V, Burian T, Chalupský J, Chung H K, Ciricosta1 O, Dakovski G L, et al. 2018 Phys. Rev. Lett. 120 055002

    [25]

    Jung Y D, Yoon J S 1996 J. Phys. B: At. Mol. Opt. Phys. 29 3549

    [26]

    Jung Y D 1998 Phys. Plasma. 5 536

    [27]

    Li B W, Jang J, Dong C Z, Wang J G, Ding X B 2009 Acta Phys. Sin. 58 5274 (in Chinese) [李博 文,蒋军,董晨钟,王建国,丁晓彬 2009 58 5274]

    [28]

    Johnson W R, Nilsen J, Cheng K T 2024 High Energ Density Phys. 53 101153

    [29]

    Zeng J, Ye C, Liu P, Gao C, Li Y, Yuan J 2022 Int. J. Mol. Sci 23 6033

    [30]

    Zhang P, J Y, Zan X, Liu P, Li Y, Gao C, Hou Y, Zeng J, Yuan J 2021 Phys. Rev. E 104 035204

    [31]

    Bar-Shalom A, Klapisch M, Oreg J 1988 Phys. Rev. A 38 1773

    [32]

    Gu M F 2008 Can. J. Phys. 86 675

    [33]

    Wünsch K, Hilse P, Schlanges M, Gericke D O 2008 Phys. Rev. E 77 056404

    [34]

    Bredow R, Bornath T, Kraeft W D, Redmer R 2013 Contrib. to Plasma Phys. 53 276

    [35]

    Schwarz V, Bornath T, Kraeft W D, Glenzer S H, Höll A, Redmer R 2007 Contrib. to Plasma Phys. 47 324

    [36]

    Bezkrovniy V, Schlanges M, Kremp D, Kraeft W D 2004 Phys. Rev. E 69 061204

    [37]

    Baus M, Hansen J P 1980 Phys. Rep. 59 1

    [38]

    Saumon D, Starrett C E, Kress J D, Clerouin J 2012 High Energy Density Phys. 8 150

    [39]

    Hou Y, Bredow R, Yuan J M, Redmer R 2015 Phys. Rev. E 91 033114

    [40]

    Hou Y, Fu Y S, Bredow R, Kang D, Redmer R, Yuan J 2017 High Energy Density Phys. 22 21

    [41]

    Dharma-Wardana M W C, Taylor R 1981 J. Phys. C: Solid State Phys. 14 629

    [42]

    Feynman R P, Metropolis N, Teller E 1949 Phys. Rev. 75 1561

    [43]

    Thøgersen M, Zinner N T, Jensen A S 2009 Phys. Rev. A 80 043625

    [44]

    Deutsch C 1977 Phys. Lett. A 60 317

    [45]

    Wang Y 2020 Phys. Rev. Lett. 124 017002

    [46]

    Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 91 (in Chinese) [金 阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 70 91 ]

    [47]

    Zeng J L, Liu L P, Liu P F, Yuan J M 2014 Phys. Rev. A 90 044701

    [48]

    Cowan R D 1981 The theory of atomic structure and spectra (California: University of California Press) pp214–236

    [49]

    Gaigalas G, Rudzikas Z, Fischer C F 1997 J. Phys. B: At. Mol. Opt. Phys. 30 3747

    [50]

    Bar-Shalom A, Klapisch M, Oreg J 1988 Phys. Rev. A 38 1773

    [51]

    Mott N F 1930 Proc.R.Soc.Lond.A 126 259

    [52]

    Vriens L 1969 Case studies in atomic collision physics (Vol. 1) (North-Holland Amsterdam: Press) p335

    [53]

    Bethe H 1930 Ann. Phys. 397 325

    [54]

    Gregory D C, Dittner P F, Crandall D H 1983 Phys. Rev. A 27 724

    [55]

    Bannister M E 1996 Phys. Rev. A 54 1435

    [56]

    Brouillard F, 2013 Atomic processes in electron-ion and ion-ion collisions (Vol. 145) (New York: Springer Science & Business Media Press) pp75–91

    [57]

    Bartschat K 1998 Comput. phys. commun. 114 168

    [58]

    Son S, Thiele R, Jurek Z, Ziaja B, and Santra R, 2014 Phys. Rev. X 4 031004

  • [1] Ge Di, Zhao Guo-Peng, Qi Yue-Ying, Chen Chen, Gao Jun-Wen, Hou Hong-Sheng. Influence of relativistic effects on photoionization process of hydrogen-like ions in plasma environment. Acta Physica Sinica, doi: 10.7498/aps.73.20240016
    [2] Ma Li-Li, Zhang Shi-Ping, Zhang Fang-Jun, Li Mai-Juan, Jiang Jun, Ding Xiao-Bin, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong. Theoretical investigation of electron-impact ionization of W6+ ion. Acta Physica Sinica, doi: 10.7498/aps.73.20240408
    [3] Jin Yang, Zhang Ping, Li Yong-Jun, Hou Yong, Zeng Jiao-Long, Yuan Jian-Min. Influence of different charge-state ion distribution on elastic X-ray scattering in warm dense matter. Acta Physica Sinica, doi: 10.7498/aps.70.20201483
    [4] Chen Zhan-Bin, Ma Kun. Influence of eikonal-initial-state on ionization of atom by proton. Acta Physica Sinica, doi: 10.7498/aps.67.20172465
    [5] Zhang Tai-Yang, Chen Ran. A collisional-radiative model for lithium impurity in plasma boundary region of Experimental Advanced Superconducting Tokamak. Acta Physica Sinica, doi: 10.7498/aps.66.125201
    [6] Zhou Hang, Cui Jiang-Wei, Zheng Qi-Wen, Guo Qi, Ren Di-Yuan, Yu Xue-Feng. Reliability of partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor field-effect transistor under the ionizing radiation environment. Acta Physica Sinica, doi: 10.7498/aps.64.086101
    [7] Jiang Ke, Lu Wu, Hu Tian-Le, Wang Xin, Guo Qi, He Cheng-Fa, Liu Mo-Han, Li Xiao-Long. Radiation damage effect and post-annealing treatments of NPN-input bipolar operational amplifier in electron radiation environment. Acta Physica Sinica, doi: 10.7498/aps.64.136103
    [8] Wu Chuan-Lu, Ma Ying, Jiang Li-Mei, Zhou Yi-Chun, Li Jian-Cheng. Computer simulation of electric properties of metal-ferroelectric-substrate structured ferroelectric field effect transistor under ionizing radiation. Acta Physica Sinica, doi: 10.7498/aps.63.216102
    [9] Zhang Li-Min, Jia Chang-Chun, Wang Qi, Chen Zhang-Jin. First-order distorted wave Born approximation for single ionization of Ar by electron impact in a coplanar doubly symmetric geometry. Acta Physica Sinica, doi: 10.7498/aps.63.153401
    [10] Chen Qiong, Yang Xian-Qing, Zhao Xin-Yin, Wang Zhen-Hui, Zhao Yue-Min. Binary collision approximation for solitary wave in periodic dimer granular chains. Acta Physica Sinica, doi: 10.7498/aps.61.044501
    [11] Ouyang Jian-Ming, Ma Yan-Yun, Shao Fu-Qiu, Zou De-Bin. The effect of energetic electron impact ionization on radiation ionization process of high-altitude nuclear explosion. Acta Physica Sinica, doi: 10.7498/aps.61.212802
    [12] J. Ullrich, A. Dorn, Ma Xin-Wen, Xu Shen-Yue, Ren Xue-Guang, T. Pflüger. Dissociative ionization of methane by 54 eV electron impact. Acta Physica Sinica, doi: 10.7498/aps.60.093401
    [13] Zhang Yan, Zheng Lian-Cun, Zhang Xin-Xin. The analytical approximate solution for Marangoni convection in a liquid layer with coupled boundary conditions. Acta Physica Sinica, doi: 10.7498/aps.58.5501
    [14] Zheng Lian-Cun, Sheng Xiao-Yan, Zhang Xin-Xin. Analytical approximate solutions for Marangoni convection boundary layer equations. Acta Physica Sinica, doi: 10.7498/aps.55.5298
    [15] QI JING-BO, CHEN CHONG-YANG, WANG YAN-SEN. ELECTRON IMPACT IONIZATION CROSS SECTIONS FOR THE Na-LIKE IONS. Acta Physica Sinica, doi: 10.7498/aps.50.1475
    [16] YAN SHI-XIANG, CHEN CHONG-YANG, TENG ZHOU-XUAN, WANG YAN-SEN, SUN YONG-SHENG. DISTORTED-WAVE CALCULATIONS OF THE ELECTRON-IMPACT IONIZATION FOR LOWLY AND MEDIUMLY IONIZED IONS. Acta Physica Sinica, doi: 10.7498/aps.47.583
    [17] QU YI-ZHI, GONG XIAO-MIN, LI JIA-MING. RELATIVISTIC EFFECT IN INELASTIC COLLISION OF ELECTRON WITH ATOM OR ION. Acta Physica Sinica, doi: 10.7498/aps.44.1719
    [18] HU WEI, FANG DU-FEI, WANG YAN-SEN, LU FU-QUAN, TANG JIA-YONG, YANG FU-JIA. ELECTRON IMPACT IONIZATION CROSS SECTION FOR LITHIUM-LIKE IONS INCLUDING EXCITATION-AUTOIONIZATION CROSS SECTION. Acta Physica Sinica, doi: 10.7498/aps.42.1416
    [19] FANG DU-FEI, WANG YAN-SEN, HU WEI, GAO HAI-BIN, LU FU-QUAN. ELECTRON IMPACT IONIZATION CROSS SECTIONS OF BORON-LIKE IONS. Acta Physica Sinica, doi: 10.7498/aps.42.40
    [20] FANG DU-FEI, WANG YAM-SEN, HU WEI. DIFFERENTIAL CROSS SECTIONS FOR ELECTRON IMPACT IONIZATION OF HELIUMLIKE IONS. Acta Physica Sinica, doi: 10.7498/aps.41.744
Metrics
  • Abstract views:  32
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  24 October 2025
  • /

    返回文章
    返回
    Baidu
    map