Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on critical current enhancement technology for YBCO superconducting tapes based on Proton irradiation

Zhu Xiaofeng Zhang Suping Zhang Ning Zhou Hongji WangChuan PanGaofeng Li Pengzhan Wang yang Zhang Tianjue

Citation:

Research on critical current enhancement technology for YBCO superconducting tapes based on Proton irradiation

Zhu Xiaofeng, Zhang Suping, Zhang Ning, Zhou Hongji, WangChuan, PanGaofeng, Li Pengzhan, Wang yang, Zhang Tianjue
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • This research proposes an innovative method that proton irradiation technology for defect control in practical engineering YBCO tapes,to improve the critical current density of YBCO high-temperature superconducting tapes in high magnetic fields.Based on the material irradiation terminal of a 4.5 MV electrostatic accelerator at Peking University, systematic irradiation experiments were conducted using 3 MeV proton beams on YBCO superconducting tapes at different fluence rates, successfully constructing high-density, low-dimensional controllable artificial pinning centers in the high superconducting tapes. This defect engineering significantly suppresses the flux creep phenomenon and enhances the pinning effect by creating low-energy pinning sites for flux lines, thereby significantly weakening the inhibitory effect of external magnetic fields on critical current (Ic). Comparative analysis of superconducting tapes before and after irradiation, including superconducting transition temperature, superconducting critical performance, and critical current density on magnetic field dependence.As the irradiation dose increases, high-density point defects (vacancies, interstitial atoms, etc.) and a small number of vacancy clusters are implanted inside the superconducting tape, resulting in a corresponding decrease in the superconducting phase. Therefore, as the dose increases, the orderliness of the superconducting phase in the superconducting tape decreases sharply, leading to a gradual widening of the superconducting transition temperature zone. By measuring the hysteresis loops of samples irradiated with different doses of protons and calculating the critical current density Jc based on the Bean model, the experimental data show that under irradiation conditions with a fluence rate of 8×1016 P/cm2, the critical current of the sample under extreme operating conditions of 4.2K@6.5T achieved an 8-fold breakthrough improvement. Meanwhile, the maximum improvement factors in critical current density at 20K@5T and 30K@4T were also 5.5 times and 4.8 times, respectively. The logarithmic curve was fitted using the Jc ∝ B– α power exponent model to obtain the power parameterα values of 0.276, 0.361, and 0.397 for the variation of critical current density with magnetic field at three temperature ranges of 4.2K, 20K, and 30K, respectively. This indicates that the superconducting tape irradiated with protons will form more effective strong pinning centers at lower temperatures, reducing the dependence of the critical current density of the superconducting tape on the magnetic field.This performance breakthrough significantly enhances the application potential of high superconducting tapes in low-temperature and high magnetic fields environments, especially in frontier fields such as particle accelerators and fusion reactors, where there is an urgent demand for high-performance superconducting magnets. The study confirms that proton irradiation technology can achieve efficient optimization of critical performance through defect engineering without altering the existing preparation process of YBCO tapes, providing a highly feasible and process-compatible technical path for practical performance control of superconducting materials.
  • [1]

    Kwok W K, Ulrich W, Glatz A, Koshelev A E, Kihlstrom K J and Crabtree G W 2016 Reports on Progress in Physics Physical Society. 79 116501

    [2]

    Kwon C, Kinder L R, Gim Y, Fan Y, Coulter J Y, Maley M P, Foltyn S R, Peterson D E, and Jia Q X 1999 Applied Superconductivity IEEE Transactions on. 9 1575

    [3]

    Haberkorn N, Miura M, Baca J, Maiorov B, Usov I, Dowden P, Foltyn S R, Holesinger T G, Willis J O, Marken K R, Izumi T, Shiohara Y, and Civale L 2012 P Physical Review. 85 174504

    [4]

    Xavier O and Teresa P.2014 Superconductor Science and Technology. 27 044003

    [5]

    Yuh S, Takahiro T, and Masateru Y 2012 Japanese Journal of Applied Physics. 51 010007

    [6]

    Sato S, Honma T, Takahashi S, Sato K, Watanabe M, Ichikawa K, Takeda K, Nakagawa K, Saito A, and Ohshima S 2013 IEEE Transactions on Applied Superconductivity. 23 7200404

    [7]

    Macmanus-Driscoll J L, Foltyn S R, Jia Q X,Wang H,Serquis A,Civale L,Maiorov B, Hawley M E, Maley M P and Peterson D E 2004 Nature Materials 3 439

    [8]

    Zhou Y X,Ghalsasi S, Rusakova I and Salama K 2007 Superconductor Science and Technology 20 S147

    [9]

    Jia Y, LeRoux M, Miller D J, Wen J G, Kwok W K, Welp U,. Rupich M W,Li X, athyamurthy S, Fleshler S, Malozemoff A P, Kayani A, Ayala-Valenzuela O, and Civale L 2013 Applied Physics Letters 103 010007

    [10]

    Leroux M, Kihlstrom K J, Holleis S, Rupich M W, Sathyamurthy S, leshler S, Sheng H P, Miller D J, Eley S, Civale L, Kayani A, Niraula P M, Welp U and Kwok W K 2015 Applied Physics Letters 107 192601

    [11]

    Fischer D X, Prokopec R, Emhofer J and Eisterer M 2018 Superconductor Science and Technology 31 044006.

    [12]

    Khadzhai G Y,Litvinov Y V,Vovk R V, Zdorovko S F, Goulatis I L and Chroneos A 2018 Journal of Materials Science. Materials in Electronics 29 7725

    [13]

    Biswal R, John J, Behera D, Kanjilal D, Avasthi D K and Mishra N C 2008 Superconductor Science and Technology 1063 245

    [14]

    Civale L, Marwick A D, Worthington T K, Kirk M A, Thompson J R, Krusin-Elbaum L, Sun Y, Clem J R and Holtzberg F 1991 Physical Review Letters 67 648

    [15]

    Gu Y, Cai C B, Liu Z Y, Liu J, Liu L, and Huang R T 2021 Journal of Applied Physics 130 085304

    [16]

    Rupich M W, Sathyamurthy S, Fleshler S, Li Q, Solovyov V, Ozaki T, Welp U, Kwok W K, Leroux M,Koshelev A E, Miller D J, Kihlstrom K, Civale L, Eley S and Kayani A 2016 IEEE Transactions on Applied Superconductivity 26 1

    [17]

    Eley S, Leroux M, Rupich M W, Miller D J, Sheng H, Niraula P M, Kayani A,Welp U, Kwok W K and Civale L 2017 Superconductor Science Technology 30 305

    [18]

    Gao Y,Wang J Y,Yang X J,Gong J H and Lu X C 2015 Nucl. Phys. Rev. 32 20 [高原,王建勇,杨向军,龚建华,路祥臣2015 原 子 核 物 理 评 论32 20]

    [19]

    Zhao P, Wang J Q, Chen M Q, Yang J X, Su Z X, Lu C Y, Liu H J, Hong Z Y and Gao R 2024 Acta Phys. Sin.73 305[赵珀,王建强,陈梅清,杨金学, 苏钲雄,卢晨阳,刘华军,洪智勇, 高瑞2024 73 305]

    [20]

    Dan M, Chen L J,He Y B,Lü X W,Wan J H,Zhang H, Zhang K J,Yang Y and Jin F Y 2022 Acta Phys. Sin.71 6[但敏,陈伦江,贺岩斌,吕兴旺,万俊豪,张虹,张珂嘉,杨莹,金凡亚 2022 71 6]

    [21]

    Li M J 2018 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese) [李敏娟 2018 博士学位论文 (上海:上海大学)]

    [22]

    Cui X M, Liu G Q, Wang J, Huang Z C, Zhao Y T, Tao B W, Li Y R 2007 Phys. C Supercond. its Appl. 466 1

  • [1] Zhao Po, Wang Jian-Qiang, Chen Mei-Qing, Yang Jin-Xue, Su Zheng-Xiong, Lu Chen-Yang, Liu Hua-Jun, Hong Zhi-Yong, Gao Rui. Effect of doping on evolution of He+ ion irradiation defects and superconductivity in EuBa2Cu3O7–δ superconducting strips. Acta Physica Sinica, doi: 10.7498/aps.73.20240124
    [2] Xue Bin-Tao, Zhang Li-Min, Liang Yong-Qi, Liu Ning, Wang Ding-Ping, Chen Liang, Wang Tie-Shan. Proton irradiation induced damage effects in CH3NH3PbI3-based perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.72.20222100
    [3] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, doi: 10.7498/aps.71.20211838
    [4] Liu Ye, Guo Hong-Xia, Ju An-An, Zhang Feng-Qi, Pan Xiao-Yu, Zhang Hong, Gu Zhao-Qiao, Liu Yi-Tian, Feng Ya-Hui. Data inversion and erroneous annealing of floating gate cell under proton radiation. Acta Physica Sinica, doi: 10.7498/aps.71.20212405
    [5] Liang Chao, Zhang Jie, Zhao Ke, Yang Xin-Sheng, Zhao Yong. Superconducting and flux pinning properties of FeSexTe1–x topological superconductors. Acta Physica Sinica, doi: 10.7498/aps.69.20201125
    [6] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin, Shen Wei-Zu. Effect of proton irradiation on microstructure evolution of permanent magnet. Acta Physica Sinica, doi: 10.7498/aps.67.20172025
    [7] Zhang Ning, Zhang Xin, Yang Ai-Xiang, Ba De-Dong, Feng Zhan-Zu, Chen Yi-Feng, Shao Jian-Xiong, Chen Xi-Meng. Damage effects of proton beam irradiation on single layer graphene. Acta Physica Sinica, doi: 10.7498/aps.66.026103
    [8] Zeng Jun-Zhe, Li Yu-Dong, Wen Lin, He Cheng-Fa, Guo Qi, Wang Bo, Maria, Wei Yin, Wang Hai-Jiao, Wu Da-You, Wang Fan, Zhou Hang. Effects of proton and neutron irradiation on dark signal of CCD. Acta Physica Sinica, doi: 10.7498/aps.64.194208
    [9] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, doi: 10.7498/aps.64.024220
    [10] Yang Jian-Qun, Li Xing-Ji, Ma Guo-Liang, Liu Chao-Ming, Zou Meng-Nan. Effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes film. Acta Physica Sinica, doi: 10.7498/aps.64.136401
    [11] Zeng Jun-Zhe, He Cheng-Fa, Li Yu-Dong, Guo Qi, Wen Lin, Wang Bo, Maria, Wang Hai-Jiao. Particle transport simulation and effect analysis of CCD irradiated by protons. Acta Physica Sinica, doi: 10.7498/aps.64.114214
    [12] Lü Ling, Zhang Jin-Cheng, Li Liang, Ma Xiao-Hua, Cao Yan-Rong, Hao Yue. Effects of 3 MeV proton irradiations on AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, doi: 10.7498/aps.61.057202
    [13] Wang Miao, Yang Wan-Min, Zhang Xiao-Ju, Tang Yan-Ni, Wang Gao-Feng. The effects of different particle size Y2Ba4CuBiOy nanoparticles doped on the properties of single domain YBCO bulk superconductors by TSIG process. Acta Physica Sinica, doi: 10.7498/aps.61.196102
    [14] Gao Peng-Ju, Zhang Wen-Gong, Chen Shu-Qing, Zhou Xiu-Hua, Xiao Li-Zu. Research on the YBCO/PAN hybridized film and its superconductivity. Acta Physica Sinica, doi: 10.7498/aps.59.583
    [15] Zhao Hui-Jie, He Shi-Yu, Sun Yan-Zheng, Sun Qiang, Xiao Zhi-Bin, Lü Wei, Huang Cai-Yong, Xiao Jing-Dong, Wu Yi-Yong. Effect of 100 keV proton irradiation on photoemission of GaAs/Ge space solar cells. Acta Physica Sinica, doi: 10.7498/aps.58.404
    [16] Fan Xian-Hong, Li Min, Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo. Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, doi: 10.7498/aps.57.6494
    [17] Fan Xian-Hong, Chen Bo, Guan Qing-Feng. The influence of proton irradiation on the microstructure of pure Al films. Acta Physica Sinica, doi: 10.7498/aps.57.1829
    [18] Chen Chang-Zhao, Cai Chuan-Bing, Liu Zhi-Yong, Ying Li-Liang, Gao Bo, Liu Jin-Lei, Lu Yu-Ming. On epitaxial structure and flux pinning of NdBa2Cu3O7-δ/YBa2Cu3O7-δ superconducting multilayers. Acta Physica Sinica, doi: 10.7498/aps.57.4371
    [19] Wei Qiang, Liu Hai, He Shi-Yu, Hao Xiao-Peng, Wei Long. Slow positron annihilation study of Al film reflector after proton irradiation. Acta Physica Sinica, doi: 10.7498/aps.55.5525
    [20] ZHANG GUO-YONG, ZHANG PENG-XIANG. A NOVEL METHOD TO MEASURE THE THICKNESS OF YBCO THIN FILM. Acta Physica Sinica, doi: 10.7498/aps.50.1451
Metrics
  • Abstract views:  37
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  12 November 2025
  • /

    返回文章
    返回
    Baidu
    map