Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Technology for enhancing critical current of YBCO superconducting tapes via proton irradiation

ZHU Xiaofeng ZHANG Suping ZHANG Ning ZHOU Hongji WANG Chuan PAN Gaofeng LI Pengzhan WANG Yang ZHANG Tianjue

Citation:

Technology for enhancing critical current of YBCO superconducting tapes via proton irradiation

ZHU Xiaofeng, ZHANG Suping, ZHANG Ning, ZHOU Hongji, WANG Chuan, PAN Gaofeng, LI Pengzhan, WANG Yang, ZHANG Tianjue
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This research adopts an innovative method, i.e. proton irradiation technology, for realizing defect control in practical engineering yttrium barium copper oxide (YBCO) tapes, in order to improve the critical current density of YBCO high-temperature superconducting tapes in high magnetic fields. Based on the material irradiation terminal of the 4.5 MV electrostatic accelerator at Peking University, systematic irradiation experiments are conducted using 3 MeV proton beams on YBCO superconducting tapes at different fluence rates, successfully constructing high-density, low-dimensional controllable artificial pinning centers in the high superconducting tapes. This defect engineering significantly suppresses the flux creep phenomenon and enhances the pinning effect by creating low-energy pinning sites for flux lines, thereby significantly weakening the inhibitory effect of external magnetic fields on critical current (Ic). Comparative analysis of superconducting tapes before and after irradiation is conducted, including superconducting transition temperature, superconducting critical performance, and dependence of critical current density on magnetic field. As the irradiation dose increases, high-density point defects (vacancies, interstitial atoms, etc.) and a small number of vacancy clusters are implanted inside the superconducting tape, resulting in a corresponding decrease in the superconducting phase. Therefore, as the dose increases, the orderliness of the superconducting phase in the superconducting tape decreases sharply, leading to a gradual widening of the superconducting transition temperature zone. By measuring the hysteresis loops of samples irradiated with different doses of protons and calculating the critical current density Jc based on the Bean model, the experimental data show that under irradiation conditions with a fluence rate of 8×1016 P/cm2, the critical current of the sample under extreme operating conditions of 4.2 K and 6.5 T achieves an 8-fold breakthrough improvement. Meanwhile, the maximum improvement factors in critical current density at 20 K and 5 T and 30 K and 4 T are also 5.5 times and 4.8 times, respectively. The logarithmic curve is fitted using the JcB power exponent model, with the power parameter α values of 0.276, 0.361, and 0.397 for the variation of critical current density with magnetic field in three temperature ranges of 4.2 K, 20 K, and 30 K, respectively. This indicates that the superconducting tape irradiated with protons will form more effective strong pinning centers at lower temperatures, reducing the dependence of the critical current density of the superconducting tape on the magnetic field. This performance breakthrough significantly enhances the application potential of high superconducting tapes in low-temperature and high magnetic fields environments, especially in frontier fields such as particle accelerators and fusion reactors, where there is an urgent demand for high-performance superconducting magnets. This work confirms that the proton irradiation technology can efficiently optimize critical performance through defect engineering without changing the existing preparation process of YBCO tapes, thereby providing a highly feasible and process-compatible technical path for realizing the practical performance control of superconducting materials.
  • 图 1  超导带材结构示意图

    Figure 1.  Structure of high-temperature superconducting tape.

    图 2  H+在Ag和YBCO中的射程

    Figure 2.  Range of H+ in Ag and YBCO.

    图 3  5种不同辐照注量下样品中引入离位损伤

    Figure 3.  Simulated displacement damage by H+ ion irradiation at five different doses.

    图 4  4.5 MV静电加速器结构示意图[2]

    Figure 4.  4.5 MV electrostatic accelerator[2].

    图 5  超导带材辐照实验 (a) 八面体旋转靶; (b) 束流积分仪

    Figure 5.  Irradiation experiment of superconducting tape: (a) Octagonal rotating target; (b) beam integrator.

    图 6  不同注量下YBCO高温超导带材的超导转变温度曲线

    Figure 6.  Superconducting transition temperature curve of YBCO high temperature superconducting tapes at different doses.

    图 7  不同温区不同注量下超导带材临界电流密度随磁场的变化

    Figure 7.  Variation of the critical current density of superconducting tapes with magnetic fields under different temperature zones and magnetic fields.

    图 8  (a)—(c) 分别为4.2 K, 20 K, 30 K温度环境下不同注量的超导带材提升因子随磁场的变化; (d) 注量为8×1016 p/cm2时, 不同温度的超导带材提升因子随磁场的变化

    Figure 8.  (a)–(c) Enhancement factor of superconducting tapes with different flux levels under magnetic fields at temperatures of 4.2 K, 20 K, and 30 K, respectively; (d) enhancement factor of superconducting tapes at different temperatures with the magnetic field at a flux of 8 × 1016 p/cm2.

    图 9  不同温度下对数坐标下临界电流密度随磁场的变化

    Figure 9.  Critical current density of high-temperture superconducting tape with magnetic field at different temperatures on logarithmic coordinates.

    表 1  不同离子、能量、注量对REBCO的临界电流性能的提升

    Table 1.  Enhancement of the critical current density of REBCO by different ions, energies, and fluence.

    离子
    种类
    能量/
    MeV
    流强/
    nA
    注量/
    (ions·cm–2)
    Jc备注
    Au181206×1011↑2.527 K@3 T
    He2.52003×1015↑1.810 K@7 T
    Ar2.51205×1011↑2.210 K@7 T
    Ta19005×1011↑4.410 K@7 T
    DownLoad: CSV

    表 2  超导带材辐照注量

    Table 2.  Irradiation fluence of superconducting tape.

    离子种类样品能量/MeV流强/nA注量/(p·cm–2)
    H超导带材310001×1015
    5×1015
    1×1016
    5×1016
    8×1016
    DownLoad: CSV
    Baidu
  • [1]

    Kwok W K, Ulrich W, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Rep. Prog. Phys. 79 116501Google Scholar

    [2]

    Kwon C, Kinder L R, Gim Y, Fan Y, Coulter J Y, Maley M P, Foltyn S R, Peterson D E, Jia Q X 1999 IEEE Trans. Appl. Supercond. 9 1575Google Scholar

    [3]

    Haberkorn N, Miura M, Baca J, Maiorov B, Usov I, Dowden P, Foltyn S R, Holesinger T G, Willis J O, Marken K R, Izumi T, Shiohara Y, Civale L 2012 Phys. Rev. 85 174504Google Scholar

    [4]

    Xavier O, Teresa P 2014 Supercond. Sci. Technol. 27 044003Google Scholar

    [5]

    Yuh S, Takahiro T, Masateru Y 2012 Jpn. J. Appl. Phys. 51 010007Google Scholar

    [6]

    Sato S, Honma T, Takahashi S, Sato K, Watanabe M, Ichikawa K, Takeda K, Nakagawa K, Saito A, Ohshima S 2013 IEEE Trans. Appl. Supercond. 23 7200404Google Scholar

    [7]

    Macmanus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439Google Scholar

    [8]

    Zhou Y X, Ghalsasi S, Rusakova I, Salama K 2007 Supercond. Sci. Technol. 20 S147Google Scholar

    [9]

    Jia Y, LeRoux M, Miller D J, Wen J G, Kwok W K, Welp U, Rupich M W, Li X, Sathyamurthy S, Fleshler S, Malozemoff A P, Kayani A, Ayala-Valenzuela O, Civale L 2013 Appl. Phys. Lett. 103 010007

    [10]

    Leroux M, Kihlstrom K J, Holleis S, Rupich M W, Sathyamurthy S, leshler S, Sheng H P, Miller D J, Eley S, Civale L, Kayani A, Niraula P M, Welp U, Kwok W K 2015 Appl. Phys. Lett. 107 192601Google Scholar

    [11]

    Fischer D X, Prokopec R, Emhofer J, Eisterer M 2018 Supercond. Sci. Technol. 31 044006Google Scholar

    [12]

    Khadzhai G Y, Litvinov Y V, Vovk R V, Zdorovko S F, Goulatis I L, Chroneos A 2018 J. Mater. Sci. Mater. El. 29 7725Google Scholar

    [13]

    Biswal R, John J, Behera D, Kanjilal D, Avasthi D K, Mishra N C 2008 Supercond. Sci. Technol. 1063 245

    [14]

    Civale L, Marwick A D, Worthington T K, Kirk M A, Thompson J R, Krusin-Elbaum L, Sun Y, Clem J R, Holtzberg F 1991 Phys. Rev. Lett. 67 648Google Scholar

    [15]

    Gu Y, Cai C B, Liu Z Y, Liu J, Liu L, Huang R T 2021 J. Appl. Phys. 130 085304Google Scholar

    [16]

    Rupich M W, Sathyamurthy S, Fleshler S, Li Q, Solovyov V, Ozaki T, Welp U, Kwok W K, Leroux M, Koshelev A E, Miller D J, Kihlstrom K, Civale L, Eley S, Kayani A 2016 IEEE Trans. Appl. Supercond. 26 1

    [17]

    Eley S, Leroux M, Rupich M W, Miller D J, Sheng H, Niraula P M, Kayani A, Welp U, Kwok W K, Civale L 2017 Superconductor Science Technology 30 305

    [18]

    Gao Y, Wang J Y, Yang X J, Gong J H, Lu X C 2015 Nucl. Phys. Rev. 32 20 [高原, 王建勇, 杨向军, 龚建华, 路祥臣 2015 原子核物理评论 32 20]

    Gao Y, Wang J Y, Yang X J, Gong J H, Lu X C 2015 Nucl. Phys. Rev. 32 20

    [19]

    Zhao P, Wang J Q, Chen M Q, Yang J X, Su Z X, Lu C Y, Liu H J, Hong Z Y, Gao R 2024 Acta Phys. Sin. 73 087401 [赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞 2024 73 087401]Google Scholar

    Zhao P, Wang J Q, Chen M Q, Yang J X, Su Z X, Lu C Y, Liu H J, Hong Z Y, Gao R 2024 Acta Phys. Sin. 73 087401Google Scholar

    [20]

    Dan M, Chen L J, He Y B, Lü X W, Wan J H, Zhang H, Zhang K J, Yang Y, Jin F Y 2022 Acta Phys. Sin. 71 237401 [但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚 2022 71 237401]Google Scholar

    Dan M, Chen L J, He Y B, Lü X W, Wan J H, Zhang H, Zhang K J, Yang Y, Jin F Y 2022 Acta Phys. Sin. 71 237401Google Scholar

    [21]

    李敏娟 2018 博士学位论文 (上海: 上海大学)

    Li M J 2018 Ph. D. Dissertation (Shanghai: Shanghai University

    [22]

    Cui X M, Liu G Q, Wang J, Huang Z C, Zhao Y T, Tao B W, Li Y R 2007 Physica C 466 1Google Scholar

  • [1] Zhu Xiaofeng, Zhang Suping, Zhang Ning, Zhou Hongji, WangChuan, PanGaofeng, Li Pengzhan, Wang yang, Zhang Tianjue. Research on critical current enhancement technology for YBCO superconducting tapes based on Proton irradiation. Acta Physica Sinica, doi: 10.7498/aps.75.20251031
    [2] Zhao Po, Wang Jian-Qiang, Chen Mei-Qing, Yang Jin-Xue, Su Zheng-Xiong, Lu Chen-Yang, Liu Hua-Jun, Hong Zhi-Yong, Gao Rui. Effect of doping on evolution of He+ ion irradiation defects and superconductivity in EuBa2Cu3O7–δ superconducting strips. Acta Physica Sinica, doi: 10.7498/aps.73.20240124
    [3] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, doi: 10.7498/aps.71.20211838
    [4] Liu Ye, Guo Hong-Xia, Ju An-An, Zhang Feng-Qi, Pan Xiao-Yu, Zhang Hong, Gu Zhao-Qiao, Liu Yi-Tian, Feng Ya-Hui. Data inversion and erroneous annealing of floating gate cell under proton radiation. Acta Physica Sinica, doi: 10.7498/aps.71.20212405
    [5] Liang Chao, Zhang Jie, Zhao Ke, Yang Xin-Sheng, Zhao Yong. Superconducting and flux pinning properties of FeSexTe1–x topological superconductors. Acta Physica Sinica, doi: 10.7498/aps.69.20201125
    [6] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin, Shen Wei-Zu. Effect of proton irradiation on microstructure evolution of permanent magnet. Acta Physica Sinica, doi: 10.7498/aps.67.20172025
    [7] Zhang Ning, Zhang Xin, Yang Ai-Xiang, Ba De-Dong, Feng Zhan-Zu, Chen Yi-Feng, Shao Jian-Xiong, Chen Xi-Meng. Damage effects of proton beam irradiation on single layer graphene. Acta Physica Sinica, doi: 10.7498/aps.66.026103
    [8] Zeng Jun-Zhe, Li Yu-Dong, Wen Lin, He Cheng-Fa, Guo Qi, Wang Bo, Maria, Wei Yin, Wang Hai-Jiao, Wu Da-You, Wang Fan, Zhou Hang. Effects of proton and neutron irradiation on dark signal of CCD. Acta Physica Sinica, doi: 10.7498/aps.64.194208
    [9] Yang Jian-Qun, Li Xing-Ji, Ma Guo-Liang, Liu Chao-Ming, Zou Meng-Nan. Effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes film. Acta Physica Sinica, doi: 10.7498/aps.64.136401
    [10] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, doi: 10.7498/aps.64.024220
    [11] Zeng Jun-Zhe, He Cheng-Fa, Li Yu-Dong, Guo Qi, Wen Lin, Wang Bo, Maria, Wang Hai-Jiao. Particle transport simulation and effect analysis of CCD irradiated by protons. Acta Physica Sinica, doi: 10.7498/aps.64.114214
    [12] Lü Ling, Zhang Jin-Cheng, Li Liang, Ma Xiao-Hua, Cao Yan-Rong, Hao Yue. Effects of 3 MeV proton irradiations on AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, doi: 10.7498/aps.61.057202
    [13] Wang Miao, Yang Wan-Min, Zhang Xiao-Ju, Tang Yan-Ni, Wang Gao-Feng. The effects of different particle size Y2Ba4CuBiOy nanoparticles doped on the properties of single domain YBCO bulk superconductors by TSIG process. Acta Physica Sinica, doi: 10.7498/aps.61.196102
    [14] Gao Peng-Ju, Zhang Wen-Gong, Chen Shu-Qing, Zhou Xiu-Hua, Xiao Li-Zu. Research on the YBCO/PAN hybridized film and its superconductivity. Acta Physica Sinica, doi: 10.7498/aps.59.583
    [15] Zhao Hui-Jie, He Shi-Yu, Sun Yan-Zheng, Sun Qiang, Xiao Zhi-Bin, Lü Wei, Huang Cai-Yong, Xiao Jing-Dong, Wu Yi-Yong. Effect of 100 keV proton irradiation on photoemission of GaAs/Ge space solar cells. Acta Physica Sinica, doi: 10.7498/aps.58.404
    [16] Fan Xian-Hong, Li Min, Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo. Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, doi: 10.7498/aps.57.6494
    [17] Fan Xian-Hong, Chen Bo, Guan Qing-Feng. The influence of proton irradiation on the microstructure of pure Al films. Acta Physica Sinica, doi: 10.7498/aps.57.1829
    [18] Chen Chang-Zhao, Cai Chuan-Bing, Liu Zhi-Yong, Ying Li-Liang, Gao Bo, Liu Jin-Lei, Lu Yu-Ming. On epitaxial structure and flux pinning of NdBa2Cu3O7-δ/YBa2Cu3O7-δ superconducting multilayers. Acta Physica Sinica, doi: 10.7498/aps.57.4371
    [19] Wei Qiang, Liu Hai, He Shi-Yu, Hao Xiao-Peng, Wei Long. Slow positron annihilation study of Al film reflector after proton irradiation. Acta Physica Sinica, doi: 10.7498/aps.55.5525
    [20] ZHANG GUO-YONG, ZHANG PENG-XIANG. A NOVEL METHOD TO MEASURE THE THICKNESS OF YBCO THIN FILM. Acta Physica Sinica, doi: 10.7498/aps.50.1451
Metrics
  • Abstract views:  28
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Received Date:  01 August 2025
  • Accepted Date:  27 October 2025
  • Available Online:  13 December 2025
  • /

    返回文章
    返回
    Baidu
    map