Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transient radiative heat flux characteristics in capillary discharge plasma jets

LIU Tianxu WANG Ruodan XIONG Tao WANG Yanan ZHAO Zheng SUN Anbang

Citation:

Transient radiative heat flux characteristics in capillary discharge plasma jets

LIU Tianxu, WANG Ruodan, XIONG Tao, WANG Yanan, ZHAO Zheng, SUN Anbang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The capillary discharge plasma ignition device features a simple and reliable structure with a high ignition efficiency, and has become a research focus in both industrial applications and academic studies. The transient radiative heat flux characteristics of the plasma jet is a critical indicator for characterizing its ignition capability. In this work, a transient radiative heat flux measurement system based on a thin-film heatflux gauge is established. Design and optimization methods are proposed to address the measurement range, response time, and sensitivity of the thin-film probe. The results indicate that reducing the thickness of the film can enhance measurement sensitivity effectively, whereas changing the film material yields relatively limited improvement. Additionally, the effects of energy storage capacitor voltage and capillary diameter on the output radiative heat flux characteristics are investigated using polyethylene and polytetrafluoroethylene as capillary propellant. The results indicate that the radiative heat flux of capillary discharge exhibits a temporal delay compared with the main discharge current. Increasing the voltage of the energy storage capacitor enhances the energy deposition efficiency of the main discharge and the plasma temperature, thereby improving both the output radiative heat flux and the duration of the heat flux. Moreover, the growth rate of the heat flux exceeds that of the stored energy. Enlarging the capillary diameter reduces the discharge time constant, thereby shortening the heat flux duration. At the same time, the ablation of the propellant becomes more sufficient, resulting in fewer jet deposits and a weaker absorption of the heat flux. When the capillary diameter increases from 1.5 mm to 3 mm, the jet expansion velocity and the energy deposition efficiency are significantly enhanced, leading to a remarkable increase in the radiative heat flux density. However, when the diameter further increases from 3 mm to 6 mm, the jet expansion velocity changes marginally, while the decrease of energy deposition efficiencycan result in a reduction in radiative heat flux. The capillary discharge with polyethylene propellant exhibits a higher peak radiative heat flux, an earlier peak time, and a shorter duration than that with the polytetrafluoroethylene propellant.
  • 图 1  量热计探头的金属薄膜结构图

    Figure 1.  Schematic of the metal thin-film in the heat flux gauge probe.

    图 2  薄膜量热计测量系统的结构图 (a) 量热计探头; (b) 驱动电路

    Figure 2.  Schematic of the film heatflux gauge measurement system: (a) The probe of the heat flux gauge; (b) the drive circuit.

    图 3  量热计探头的电阻-温度关系

    Figure 3.  Resistance-temperature relationship of the heatflux gauge probe.

    图 4  毛细管放电等离子体射流实验平台结构图

    Figure 4.  Schematic of the capillary discharge plasma experimental platform.

    图 5  毛细管放电射流装置结构图

    Figure 5.  Schematic of the capillary discharge device.

    图 6  不同工质毛细管放电电压与电流波形 (a) PE; (b) PTFE

    Figure 6.  Voltage and current waveforms of capillary discharge with different propellant: (a) PE; (b) PTFE.

    图 7  高速相机拍摄的不同工质等离子体射流在空气中发展过程 (a) PE; (b) PTFE

    Figure 7.  Image sequence of plasma jet development in air captured by high-speed camera with different propellant: (a) PE; (b) PTFE.

    图 8  PE和PTFE工质等离子体射流长度和宽度随时间变化趋势

    Figure 8.  Temporal variation of the length and width of plasma jets with PE and PTFE propellant.

    图 9  驱动电路V0V1电压波形(200 kHz低通滤波)

    Figure 9.  Voltage waveform of V0 and V1 in the drive circuit (200 kHz low-pass filtered).

    图 10  PE和PTFE工质毛细管放电热负荷与热流密度

    Figure 10.  The heat load and the heat flux of the capillary discharge with PE and PTFE propellant.

    图 11  C1不同充电电压下的主放电电流波形 (a) PE; (b) PTFE

    Figure 11.  The main discharge current waveform under different charging voltage of C1: (a) PE; (b) PTFE.

    图 12  C1不同充电电压下不同放电阶段能量沉积效率

    Figure 12.  The energy deposition efficiency of different discharge stage under different charging voltage of C1.

    图 13  C1不同充电电压下等离子体射流尺寸随时间变化 (a) PE长度; (b) PE宽度; (c) PTFE长度; (d) PTFE宽度

    Figure 13.  Temporal variation of plasma jet sizes under different charging voltage of C1: (a) PE length; (b) PE width; (c) PTFE length; (d) PTFE width.

    图 14  C1不同充电电压下的热流密度随时间变化 (a) PE; (b) PTFE

    Figure 14.  Temporal variation of the heatflux under different charging voltage of C1: (a) PE; (b) PTFE.

    图 15  C1不同储能条件下毛细管放电热负荷与热流密度峰值

    Figure 15.  The heat load and the peak heat flux under different storage energy of C1.

    图 16  不同毛细管直径下主放电电流波形 (a) PE; (b) PTFE

    Figure 16.  The main discharge current waveform under different capillary diameters: (a) PE; (b) PTFE.

    图 17  不同毛细管直径下不同放电阶段能量沉积效率

    Figure 17.  The energy deposition efficiency of different discharge stage under different capillary diameter.

    图 18  不同直径毛细管放电等离子体射流尺寸随时间变化 (a) PE长度; (b) PE宽度; (c) PTFE长度; (d) PTFE宽度

    Figure 18.  Temporal variation of plasma jet sizes under different capillary diameter: (a) PE length; (b) PE width; (c) PTFE length; (d) PTFE width.

    图 19  不同直径下的热流密度随时间变化 (a) PE; (b) PTFE

    Figure 19.  Temporal variation of heat flux under different capillary diameter: (a) PE; (b) PTFE.

    图 20  不同毛细管直径放电热负荷与热流密度

    Figure 20.  The heat load and the peak heat flux under different capillary diameter.

    图 21  不同直径毛细管放电后PMMA挡板上沉积物

    Figure 21.  Deposits on the PMMA boards after discharge with different capillary diameter.

    表 1  常见金属薄膜物性参数与灵敏度(d = 10–6 m)

    Table 1.  Physical properties and sensitivity of common metal films (d = 10–6 m).

    材料 ρm
    /(g·cm–3)
    cp
    /(J·kg–1·K–1)
    α×10–3
    /K–1
    s×10–3
    /(m2·J–1)
    Ni 8.91 440 7.32 1.58
    Au 19.3 128 4.04 1.47
    Ag 10.5 235 4.13 1.52
    Cu 8.92 385 4.40 1.16
    Fe 7.87 449 7.09 1.70
    Al 2.70 897 4.60 1.74
    Pt 21.1 133 3.88 1.26
    Pd 12.0 240 3.76 1.12
    Mg 1.74 1023 4.14 2.07
    DownLoad: CSV

    表 2  薄膜量热计热流测量系统参数

    Table 2.  Parameters of the film heatflux gauge measurement system.

    参数数值
    ρm/(kg·m–3)8.91×103
    cp/(J·kg–1·K–1)440
    l/mm13
    w/mm1.14
    d/μm3
    R10.5
    R24
    Vs/V50
    ΔTR/(K·Ω–1)653.4
    DownLoad: CSV
    Baidu
  • [1]

    Taylor M J 2001 IEEE Transactions on Magnetics 37 194Google Scholar

    [2]

    Gebhart T E, Martinez-Rodriguez R A, Baylor L R, Rapp J, Winfrey A L 2017 J. Appl. Phys. 122 063302Google Scholar

    [3]

    Gebhart T E, Baylor L R, Rapp J, Winfrey A L 2018 J. Appl. Phys. 123 033301Google Scholar

    [4]

    王亚楠, 葛崇剑, 程乐, 丁卫东, 耿金越 2020 推进技术 41 149

    Wang Y N, Ge C J, Cheng L, Ding W D, Geng J Y 2020 J. Propul. Techn. 41 149

    [5]

    Winfrey A L, Bourham M A 2013 2013 IEEE Pulsed Power and Plasma Science Conference (PPPS 2013) San Francisco, CA, USA, June 16−21, 2013 p1

    [6]

    Yang W H, Hang Y H, Fan H, Chen L, Li X W, Murphy A B 2019 J. Phys. D: Appl. Phys. 53 075204

    [7]

    Jiang S, Chen L, Shi H T, He Y Z, Li X W 2023 IEEE Trans. Plasma Sci. 51 1117Google Scholar

    [8]

    Li J, Litzinger T A, Thynell S T 2005 J. Propul. Power 21 44Google Scholar

    [9]

    Li J, Litzinger T A, Thynell S T 2004 J. Propul. Power 20 675Google Scholar

    [10]

    Wang Q, Yang W H, Hang Y H, Fan H, Li X W 2019 J. Phys. D-Appl. Phys. 52 334002Google Scholar

    [11]

    Wang Q, Hang Y H, Li X W, Jia S L 2019 IEEE Trans. Plasma Sci. 47 1950Google Scholar

    [12]

    Morgan T W, De Kruif T M, Van Der Meiden H J, Van Den Berg M A, Scholten J, Melissen W, Krijger B J M, Bardin S, De Temmerman G 2014 Plasma Phys. Control. Fusion 56 095004Google Scholar

    [13]

    Porwitzky A J, Keidar M, Boyd I D 2007 Propell. Explos. Pyrot. 32 385Google Scholar

    [14]

    Porwitzky A J, Keidar M, Boyd I D 2007 IEEE Trans. Magnet. 43 313Google Scholar

    [15]

    Yang W H, Jiang S, Chen L, Li X W, Gu K Q, He Y Z, Li W H 2021 Phys. Plasmas 28 113503Google Scholar

    [16]

    Liu S, Xu T, Shi Y H, Zhan W, Liu C Y, Lu Z J, Yang L J 2022 Rev. Sci. Instrum. 93 103544Google Scholar

    [17]

    Spielman R B, Deeney C, Fehl D L, Hanson D L, Keltner N R, McGurn J S, McKenney J L 1999 Rev. Sci. Instrum. 70 651Google Scholar

    [18]

    Das M K, Thynell S T 2006 J. Thermophys. Heat Tr. 20 903Google Scholar

    [19]

    Das M, Thynell S T, Li J, Litzinger T A 2005 J. Thermophys. Heat Tr. 19 572Google Scholar

    [20]

    蒋仕, 杨伟鸿, 陈立, 李伟昊, 李兴文, 石桓通 2022 中国电机工程学报 42 415

    Jiang S, Yang W H, Chen L, Li W H, Li X W, Shi H T 2022 Proc. CSEE 42 415

    [21]

    Starner K 1968 ISA Trans. 7 181

    [22]

    Haynes W M 2016 CRC Handbook of Chemistry and Physics (97th ed. ) (Boca Raton: CRC Press) pp 2097−2289

    [23]

    Liu T X, Cheng R Z, Wang R D, Zhao Z, Wang Y N, Sun A B 2024 Rev. Sci. Instrum. 95 093540Google Scholar

    [24]

    王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越 2021 70 235204Google Scholar

    Wang Y N, Ren L Y, Ding W D, Sun A B, Geng J Y 2021 Acta Phys. Sin. 70 235204Google Scholar

    [25]

    Zhang J B, Li X W, Yang W H, Yan W R, Wei D, Liu Y, Yan G H 2018 Phys. Plasmas 25 103501Google Scholar

    [26]

    Keidar M, Boyd I D, Beilis I I 2001 J. Phys. D: Appl. Phys. 34 1675Google Scholar

    [27]

    Li R, Li X W, Jia S L, Murphy A B, Shi Z Q 2010 IEEE Trans. Plasma Sci. 38 1033Google Scholar

  • [1] LI Xiuru, LIU Yalu, MA Jiayu, WU Yuting, WANG Chenghui, MO Runyang. Bouncing behavior of microbubbles in rigid capillary tube. Acta Physica Sinica, doi: 10.7498/aps.74.20250968
    [2] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, doi: 10.7498/aps.71.20212435
    [3] Wang Ya-Nan, Ren Lin-Yuan, Ding Wei-Dong, Sun An-Bang, Geng Jin-Yue. Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster. Acta Physica Sinica, doi: 10.7498/aps.70.20211198
    [4] Niu Qing-Chen, Gou Jun, Wang Jun, Jiang Ya-Dong. Absorption enhancement of terahertz wave in microbolometers by titanium disk array. Acta Physica Sinica, doi: 10.7498/aps.68.20190902
    [5] Liu Tao, Zhao Yong-Peng, Cui Huai-Yu, Liu Xiao-Lin. Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge based on double-pass amplification. Acta Physica Sinica, doi: 10.7498/aps.68.20181617
    [6] Lü Yue-Lan, Yin Xiang-Bao, Sun Wei-Min, Liu Yong-Jun, Yuan Li-Bo. Laser emission characteristics of the capillary of dye-doped liquid crystal. Acta Physica Sinica, doi: 10.7498/aps.67.20171844
    [7] Liu Tao, Zhao Yong-Peng, Ding Yu-Jie, Li Xiao-Qiang, Cui Huai-Yu, Jiang Shan. Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, doi: 10.7498/aps.66.155201
    [8] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, doi: 10.7498/aps.65.095201
    [9] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, doi: 10.7498/aps.64.124703
    [10] Zhao Yong-Peng, Xu Qiang, Xiao De-Long, Ding Ning, Xie Yao, Li Qi, Wang Qi. Time behavior and optimum conditions for the Xe gas extreme ultraviolet source. Acta Physica Sinica, doi: 10.7498/aps.62.245204
    [11] Gu Yu-Qiu, Ma Zhan-Nan, Zheng Wu-Di, Wang Xiao-Fang, Wu Yu-Chi, Zhu Bin, Dong Ke-Gong, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Zhang Bao-Han, Jiao Chun-Ye, Wen Xian-Lun, Zang Hua-Ping, Yu Jin-Qing, Wei Lai. Density measurement and MHD simulation ofgas-filled capillary discharge waveguide. Acta Physica Sinica, doi: 10.7498/aps.60.095202
    [12] Huang Wen-Tong, Li Shou-Zhe, Wang De-Zhen, Ma Teng-Cai. Characteristics of the plasma discharge generated in dielectric capillary at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.59.4110
    [13] Guo Tie-Ying, Lou Shu-Qin, Li Hong-Lei, Jian Shui-Sheng. Capillary drawing for fabrication of photonic crystal fibers: theoretical calculation and experiments. Acta Physica Sinica, doi: 10.7498/aps.58.4724
    [14] Guo Wen-Gang, Yang Xiu-Feng, Luo Shao-Jun, Li Yong-Nan, Tu Cheng-Hou, Lü Fu-Yun, Wang Hong-Jie, Li En-Bang, Lü Chao. A fiber sensor for measuring gas concentration based on laser’s transient regime. Acta Physica Sinica, doi: 10.7498/aps.56.308
    [15] Cao Shi-Ying, Wang Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue, Yang Jian-Jun, Zhu Xiao-Nong. Spectrum evolution of filamentation restricted by capillary in high pressure gas. Acta Physica Sinica, doi: 10.7498/aps.55.4734
    [16] Sun Jiao, Zhang Jia-Liang, Wang De-Zhen, Ma Teng-Cai. A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.55.344
    [17] Wei Zhong-Chao, Dai Qiao-Feng, Wang He-Zhou. Spectral properties of fcc-like cylindrical colloidal crystals. Acta Physica Sinica, doi: 10.7498/aps.55.733
    [18] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, doi: 10.7498/aps.54.2731
    [19] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, doi: 10.7498/aps.54.4979
    [20] GU MEI-MEI, ZHANG PENG-XIANG, LI GUO-ZHEN. COLOSSAL MAGNETORESISTANCE BOLOMETER. Acta Physica Sinica, doi: 10.7498/aps.49.1567
Metrics
  • Abstract views:  328
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  26 August 2025
  • Accepted Date:  30 September 2025
  • Available Online:  10 October 2025
  • /

    返回文章
    返回
    Baidu
    map