-
The capillary discharge plasma ignition device features a simple and reliable structure with a high ignition efficiency, and has become a research focus in both industrial applications and academic studies. The transient radiative heat flux characteristics of the plasma jet is a critical indicator for characterizing its ignition capability. In this paper, a transient radiative heat flux measurement system based on a thin-film heatflux gauge is established. Design and optimization methods are proposed to address the measurement range, response time, and sensitivity of the thin-film probe. The results indicate that reducing the thickness of the film enhances measurement sensitivity effectively, whereas changing the film material yields relatively limited improvement. Additionally, the effects of energy storage capacitor voltage and capillary diameter on the output radiative heat flux characteristics are investigated, using polyethylene and polytetrafluoroethylene as capillary propellant. The results indicate that the radiative heat flux of capillary discharge exhibits a temporal delay compared to the main discharge current. Increasing the voltage of the energy storage capacitor enhances the energy deposition efficiency of the main discharge and the plasma temperature, thereby improving both the output radiative heat flux and the duration of the heat flux. Moreover, the growth rate of the heat flux exceeds that of the stored energy. Enlarging the capillary diameter reduces the discharge time constant, thereby shortening the heat flux duration. At the same time, the ablation of the propellant becomes more sufficient, resulting in fewer jet deposits and a weaker absorption of the heat flux. When the capillary diameter increases from 1.5 mm to 3 mm, the jet expansion velocity and the energy deposition efficiency significantly enhanced, leading to a marked increase in the radiative heat flux density. However, when the diameter further increases from 3 mm to 6 mm, the jet expansion velocity changes marginally, while the energy deposition efficiency decreases, resulting in a reduction in radiative heat flux. The capillary discharge with polyethylene propellant exhibits a higher peak radiative heat flux, an earlier peak time, and a shorter duration compared to the polytetrafluoroethylene propellant.
-
Keywords:
- Capillary discharge /
- thin-film heatflux gauge /
- radiative heat flux /
- transient characteristics
-
[1] Taylor M J 2001 IEEE Transactions on Magnetics 37 194
[2] Gebhart T E, Martinez-Rodriguez R A, Baylor L R, Rapp J, Winfrey A L 2017 Journal of Applied Physics 122 063302
[3] Gebhart T E, Baylor L R, Rapp J, Winfrey A L 2018 Journal of Applied Physics 123 033301
[4] Wang Y N, Ge C J, Cheng L, Ding W D, Geng J Y 2020 Journal of propulsion Technology. 41 149 (in Chinese)[王亚楠, 葛崇剑, 程乐, 丁卫东, 耿金越 2020 推 进技术 41 149]
[5] Winfrey A L, Bourham M A 2013 2013 IEEE Pulsed Power and Plasma Science Conference (PPPS 2013) San Francisco, CA, USA, June 16-21, 2013 p1
[6] Yang W H, Hang Y H, Fan H, Chen L, Li X W, Murphy A B 2019 J. Phys. D:Appl. Phys. 53 075204
[7] Jiang S, Chen L, Shi H T, He Y Z, Li X W 2023 IEEE Transactions on Plasma Science 51 1117
[8] Li J, Litzinger T A, Thynell S T 2005 Journal of Propulsion and Power 21 44
[9] Li J, Litzinger T A, Thynell S T 2004 Journal of Propulsion and Power 20 675
[10] Wang Q, Yang W H, Hang Y H, Fan H, Li X W 2019 J. Phys. D-Appl. Phys. 52 334002
[11] Wang Q, Hang Y H, Li X W, Jia S L 2019 IEEE Trans. Plasma Sci. 47 1950
[12] Morgan T W, De Kruif T M, Van Der Meiden H J, Van Den Berg M A, Scholten J, Melissen W, Krijger B J M, Bardin S, De Temmerman G 2014 Plasma Phys. Control. Fusion 56 095004
[13] Porwitzky A J, Keidar M, Boyd I D 2007 Propellants, Explosives, Pyrotechnics 32 385
[14] Porwitzky A J, Keidar M, Boyd I D 2007 IEEE Transactions on Magnetics 43 313
[15] Yang W H, Jiang S, Chen L, Li X W, Gu K Q, He Y Z, Li W H 2021 Physics of Plasmas 28 113503
[16] Liu S, Xu T, Shi Y H, Zhan W, Liu C Y, Lu Z J, Yang L J 2022 Review of Scientific Instruments 93 103544
[17] Spielman R B, Deeney C, Fehl D L, Hanson D L, Keltner N R, McGurn J S, McKenney J L 1999 Review of Scientific Instruments 70 651
[18] Das M K, Thynell S T 2006 Journal of Thermophysics and Heat Transfer 20 903
[19] Das M, Thynell S T, Li J, Litzinger T A 2005 Journal of Thermophysics and Heat Transfer 19 572
[20] Jiang S, Yang W H, Chen L, Li W H, Li X W, Shi H T 2022 Proceedings of the CSEE 42 415 (in Chinese)[蒋仕, 杨伟鸿, 陈立, 李伟昊, 李兴文, 石桓通 2022 中 国电机工程学报 42 415]
[21] Starner K 1968 ISA Trans. 7 181
[22] Haynes W M 2016 CRC Handbook of Chemistry and Physics (97th ed.) (Boca Raton:CRC Press) pp 2097-2289
[23] Liu T X, Cheng R Z, Wang R D, Zhao Z, Wang Y N, Sun A B 2024 Review of Scientific Instruments 95 093540
[24] Wang Y N, Ren L Y, Ding W D, Sun A B, Geng J Y 2021 Acta Phys. Sin. 70 312 (in Chinese)[王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越 2021 70 312]
[25] Zhang J B, Li X W, Yang W H, Yan W R, Wei D, Liu Y, Yan G H 2018 Physics of Plasmas 25 103501
[26] Keidar M, Boyd I D, Beilis I I 2001 J. Phys. D:Appl. Phys. 34 1675
[27] Li R, Li X W, Jia S L, Murphy A B, Shi Z Q 2010 IEEE Transactions on Plasma Science 38 1033
Metrics
- Abstract views: 69
- PDF Downloads: 0
- Cited By: 0