Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of dynamics and energy consumption in capacitor-free memristive neural circuit

GUO Qun XU Ying

Citation:

Analysis of dynamics and energy consumption in capacitor-free memristive neural circuit

GUO Qun, XU Ying
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To address the issues of high dynamic power consumption and substantial occupation of silicon integration resources in traditional capacitor-containing neuronal circuits, this study proposes a capacitor-free neuronal circuit based on a charge-controlled memristor. By taking the intrinsic parameters of the charge-controlled memristor as the reference for scaling transformation, dimensionless dynamical equations are derived. The local asymptotic stability of the system is verified using Jacobian matrix eigenvalue decomposition and the Routh-Hurwitz criterion. Gaussian white noise is introduced to simulate the interference for detecting coherent resonance, while energy characteristics are analyzed by combining Hamiltonian energy formulas and resistance energy consumption expressions. Additionally, the fourth-order Runge-Kutta method is adopted to conduct numerical simulations.The research results indicate that external stimulus, ionic channel conductance, and reversal potential can flexibly regulate the periodic/chaotic firing modes of the neuron. In the periodic state, the proportion of electric field energy of the charge-controlled memristor in the total energy is higher; in the chaotic state, however, the proportion of magnetic field energy of the inductive coils increases. The circuit exhibits coherent resonance under the influence of noise, and resistor is the main energy-consuming component. The conclusion proves that the circuit is feasible in principle, with rich dynamical characteristics and good noise robustness. Adjusting the resistance value can enhance energy efficiency while preserving multiple firing modes, thereby providing theoretical support and optimization direction for designing high-integration, low-power neuromorphic computing circuits.
  • 图 1  无电容嵌入式忆阻神经元电路示意图. M(q)表示荷控忆阻器, L1, L2表示感应线圈, E1, E2表示恒定电压源, R1, R2, R3表示恒定电阻

    Figure 1.  Schematic diagram of the capacitor-free embedded memristive neural circuit. M(q) denotes the charge-controlled memristor, L1 and L2 denote inductive coils, E1 and E2 denote constant voltage sources, and R1, R2, and R3 denote constant resistors.

    图 2  变量x的峰值xpeak和系统最大Lyapunov指数关于激励频率ω的分岔图

    Figure 2.  Bifurcation diagram of the peak value xpeak of variable x and the maximum Lyapunov exponent of the system versus the excitation frequency ω.

    图 3  不同激励频率ω下, 相图、膜电位u和哈密顿能量H的演化图 (a1)—(a3) ω = 0.233; (b1)—(b3) ω = 0.857

    Figure 3.  Phase portraits, time evolution of the membrane potential u, and time evolution of the Hamilton energy H under different excitation frequencies ω: (a1)–(a3) ω = 0.233; (b1)–(b3) ω = 0.857.

    图 4  变量x的峰值xpeak和系统最大Lyapunov指数关于参数A的分岔图

    Figure 4.  Bifurcation diagram of the peak value xpeak of variable x and the maximum Lyapunov exponent of the system versus parameter A.

    图 5  不同激励幅值A下, 相图、膜电位u和哈密顿能量H的演化图 (a1)—(a3) A = 3.623, (b1)—(b3) A = 3.77

    Figure 5.  Phase portraits, time evolution of the membrane potential u, and time evolution of the Hamilton energy H under different parameter A: (a1)–(a3) A = 3.623; (b1)–(b3) A = 3.77.

    图 6  变量x的峰值xpeak和能量平均值$ \left\langle H\right\rangle $随参数a变化的依赖关系曲线

    Figure 6.  Bifurcation diagram of the peak value xpeak of variable x and average energy $ \left\langle H\right\rangle $versus parameter a.

    图 7  不同参数a下, 相图、膜电位u和哈密顿能量H的演化图 (a1)—(a3) a = 0.579; (b1)—(b3) a = 0.56

    Figure 7.  Phase portraits, time evolution of the membrane potential u, and time evolution of the Hamilton energy H under different parameter a: (a1)–(a3) a = 0.579; (b1)–(b3) a = 0.56

    图 8  变量x的峰值xpeak和能量平均值$ \left\langle H\right\rangle $随参数b变化的依赖关系曲线

    Figure 8.  Bifurcation diagram of the peak value xpeak and average energy $ \left\langle H\right\rangle $ of variable x versus parameter b.

    图 9  不同参数b下, 相图、膜电位u和哈密顿能量H的演化图 (a1)—(a3) b = 0.991; (b1)—(b3) b = 0.928

    Figure 9.  Phase portraits, time evolution of the membrane potential u, and time evolution of the Hamilton energy H under different parameter b: (a1)–(a3) b = 0.991; (b1)–(b3) b = 0.928.

    图 10  不同放电模式对应的磁场能量和电场能量占总哈密顿能量的比值  (a) 周期态b = 0.991;  (b) 混沌态b = 0.928

    Figure 10.  Ratios of magnetic field energy and electric field energy to the total Hamilton energy corresponding to different discharge patterns: (a) Periodic state, b = 0.991; (b) chaotic state, b = 0.928.

    图 11  参数a依据方程(23)的能量自适应调节模式进行演化时, 不同阈值ε下(a1), (a2) u, (b1), (b2) y的时序图; (c1), (c2)哈密顿能量H和(d1), (d2)参数a随时间的演化曲线. 参考实际能量值对ε直接取值(a) ε1 = 262.7, σ1 = 0.1; (b) ε2 = 280.7, σ2 = 0.1. a的初始值ainitial = 0.001

    Figure 11.  When parameter a evolves according to the energy adaptive adjustment mode in Eq.(23), time series of (a1), (a2) u and (b1), (b2) y under different thresholds ε; (c1), (c2) the time evolution curves of Hamilton energy H, and (d1), (d2) parameter a. The threshold values ε are directly set with reference to the actual energy values: (a) ε1 = 262.7, σ1 = 0.1; (b) ε2 = 280.7, σ2 = 0.1. ainitial = 0.001 (initial value of parameter a).

    图 12  噪声分别作用在不同变量上的变异系数CV和哈密顿能量H随噪声强度D的演化图 (a1), (a2) x; (b1), (b2) y; (c1), (c2) z

    Figure 12.  Evolution curves of the coefficient of variation (CV) and Hamilton energy (H) with noise intensity (D) when noise is applied separately to different variables: (a1), (a2) x; (b1), (b2) y; (c1), (c2) z.

    图 13  神经元工作过程中分别处于(a) 周期放电b = 0.991和(b) 混沌放电b = 0.928时, 电阻R1, R2R3对应的能量消耗占比情况; (c) b = 1.72时变量x的峰值xpeak对参数g的分岔图

    Figure 13.  Proportion of energy consumption for resistors R1, R2 and R3 during neural operation under (a) periodic firing b = 0.991 and (b) chaotic firing b = 0.928; (c) bifurcation diagram of the peak value xpeak of variable g.

    Baidu
  • [1]

    Izhikevich E M 2003 IEEE Trans. Neural Netw. 14 1569Google Scholar

    [2]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500Google Scholar

    [3]

    Fitzhugh R 1960 J. Gen. Physiol. 43 867Google Scholar

    [4]

    Feali M S 2025 AEU-Int. J. Electron. Commun. 191 155679Google Scholar

    [5]

    Harerimana G, Kim I G, Kim J W, Jang B 2023 IEEE Access 11 106334Google Scholar

    [6]

    Chen C A, Mathalon D H, Roach B J, Cavus I, Spencer D D, Ford J M 2011 J. Cogn. Neurosci. 23 2892Google Scholar

    [7]

    Montano N, Furlan R, Guzzetti S, McAllen R M, Julien C 2009 Phil. Trans. R. Soc. A 367 1265Google Scholar

    [8]

    Shao J, Liu Y H, Gao D S, Tu J, Yang F 2021 Front. Cell. Neurosci. 15 741292Google Scholar

    [9]

    Koch N A, Sonnenberg L, Hedrich U B, Lauxmann S, Benda J 2023 Front. Neurol. 14 1194811Google Scholar

    [10]

    Dai Y, Cheng Y, Fedirchuk B, Jordan L M, Chu J H 2018 J. Neurophysiol. 120 1840Google Scholar

    [11]

    Velasco E, Alvarez J L, Meseguer V M, Gallar J, Talavera Karel 2022 Pain 163 64Google Scholar

    [12]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171Google Scholar

    [13]

    Xu Y H, Zhang S, Zhao Q Y, You S N, Dun W J, Zhao M K, Xu G Z 2023 Life Sci. Instrum. 21 64 [徐亦豪, 张帅, 赵清扬, 由胜男, 杜文静, 赵明康, 徐桂芝 2023 生命科学仪器 21 64]

    Xu Y H, Zhang S, Zhao Q Y, You S N, Dun W J, Zhao M K, Xu G Z 2023 Life Sci. Instrum. 21 64

    [14]

    Bao H, Xi M Q, Tang H G, Zhang X, Xu Q, Bao B C 2025 IEEE Trans. Ind. Inform. 21 1862Google Scholar

    [15]

    Zhang D K, Li Y Q, Rasch M J, Wu S 2013 Front. Comput. Neurosci. 7 56

    [16]

    Kobylarz T J, Kobylarz E J 2021 Clin. Neurophysiol. 132 e1

    [17]

    Wang Y Q, Ding G H, Yao W 2023 Appl. Math. 3 758

    [18]

    Yuan Z X, Feng P H, Fan Y C, Yu Y Y, Wu Y 2022 Cogn. Neurodyn. 16 183Google Scholar

    [19]

    Zhang S, Cui K, Shi X, Wang Z, Xu G Z 2019 Trans. China Electrotech. Soc. 34 3741 [张帅, 崔琨, 史勋, 王卓, 徐桂芝 2019 电工技术学报 34 3741]

    Zhang S, Cui K, Shi X, Wang Z, Xu G Z 2019 Trans. China Electrotech. Soc. 34 3741

    [20]

    Yang F F, Song X L, Yu Z H 2024 Chaos Soliton. Fract. 188 115496Google Scholar

    [21]

    Chen Y X, Guo Q, Zhang X F, Wang C N 2024 Chaos Soliton. Fract. 189 115738Google Scholar

    [22]

    Kumar P, Erturk V S 2025 Chin. Phys. B 34 018704Google Scholar

    [23]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 116 473Google Scholar

    [24]

    Hodgkin, A L, Huxley, A F 1952 J. Physiol. 116 497Google Scholar

    [25]

    FitzHugh R 1961 Biophys. J. 1 445Google Scholar

    [26]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061Google Scholar

    [27]

    Izhikevich E M 2004 IEEE Trans. Neural Netw. 15 1063Google Scholar

    [28]

    Izhikevich E M, Edelman G M 2008 Proc. Natl. Acad. Sci. U. S. A. 105 3593Google Scholar

    [29]

    Li X Y, Min F H, Xiang W K, Cao Y 2023 J. Nanjing Norm. Univ. (Eng. Technol. Ed. ) 23 1 [李馨雅, 闵富红, 相惟康, 曹弋 2023 南京师范大学学报(工程技术版) 23 1]

    Li X Y, Min F H, Xiang W K, Cao Y 2023 J. Nanjing Norm. Univ. (Eng. Technol. Ed. ) 23 1

    [30]

    Bao H, Zhang J, Wang N, Kuznetsov N V, Bao B C 2022 Chaos 32 123101Google Scholar

    [31]

    Wang S C, Lu Z Z, Liang Y, Wang G Y 2022 Acta Phys. Sin. 71 050502 [王世场, 卢振洲, 梁燕, 王光义 2022 71 050502]Google Scholar

    Wang S C, Lu Z Z, Liang Y, Wang G Y 2022 Acta Phys. Sin. 71 050502Google Scholar

    [32]

    Zhang S H, Wang C, Zhang H L, Lin H R 2023 Chaos 33 083138Google Scholar

    [33]

    Jeyasothy A, Sundaram S, Sundarajan N 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 1231Google Scholar

    [34]

    Wang B C, Lv M, Zhang X, Ma J 2024 Phys. Scr. 99 055225Google Scholar

    [35]

    Jia J E, Yang F F, Ma J 2024 Chaos Soliton. Fract. 173 113689

    [36]

    Jia J E, Wang C N, Ren G D 2025 Chin. J. Phys. 95 978Google Scholar

    [37]

    Li R H, Ding R H. 2021 Int. J. Mod. Phys. B 35 2150166Google Scholar

    [38]

    Xu L, Qi G, Ma J 2022 Appl. Math. Model. 101 503Google Scholar

    [39]

    Yakopcic C, Hasan R, Taha T M, McLean M, Palmer D 2014 Electron. Lett. 50 492Google Scholar

    [40]

    Shi S Y, Liang Y, Li Y Q, Lu Z Z, Dong Y J 2024 Chaos Soliton. Fract. 180 114534Google Scholar

    [41]

    Shen H, Yu F, Wang C H, Sun J R, Cai S 2022 Nonlinear Dyn. 110 3807Google Scholar

    [42]

    Miranda E, Sune J 2020 Materials 13 938Google Scholar

    [43]

    Yang F F, Ma J, Wu F Q 2024 Chaos Soliton. Fract. 187 115361Google Scholar

    [44]

    Li Y N, Guo Q, Wang C N, Ma J 2024 Commun. Nonlinear Sci. Numer. Simul. 139 108320Google Scholar

    [45]

    Yu J, Li C, Zhang X M, Liu Q, Liu M 2025 Sci. China Inf. Sci. 55 749 [余杰, 李超, 张续猛, 刘琦, 刘明 2025 中国科学: 信息科学 55 749]

    Yu J, Li C, Zhang X M, Liu Q, Liu M 2025 Sci. China Inf. Sci. 55 749

    [46]

    Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73 207302 [贡以纯, 明建宇, 吴思齐, 仪明东, 解令海, 黄维, 凌海峰 2024 73 207302]Google Scholar

    Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73 207302Google Scholar

    [47]

    Ma D, Jin X F, Sun S C, Li Y T, Wu X D, Hu Y N, Yang F C, Tang H J, Zhu X L, Lin P, Pan G 2024 Natl. Sci. Rev. 11 nwae102Google Scholar

    [48]

    Sun B, Guo C B, Cui C Q, Zhang G H 2021 Microelectron. Reliab. 121 114123Google Scholar

    [49]

    Hernandez-Balaguera E, Vara H, Polo J L 2018 J. Electrochem. Soc. 165 G3099Google Scholar

    [50]

    Kim D, Kwon K, Kim Hea, Jin S, Yang H, Kim J, Park J 2019 ECS Meet. Abstr. MA2019-01 1169

    [51]

    Lee J, Cha M, Kwon M 2023 Appl. Sci. 13 2628Google Scholar

    [52]

    Joop M K, Azghadi M R, Behbahani F, Al-Shidaifat A, Song H J 2023 IEEE Access 11 133451Google Scholar

    [53]

    Zhou P J, Zuo Y, Qiao G C, Zhang C M, Zhang Z, Meng L W, Yu Q, Liu Y, Hu G S 2023 IEEE Trans. Biomed. Circuits Syst. 17 1319Google Scholar

    [54]

    Yang F F, Song X L, Ma J 2024 Chin. J. Phys. 91 287Google Scholar

  • [1] DENG Haozhou, WANG Like, ZHU Zhaorui, WANG Hengtong, QU Shixian. The bonder collision bifurcations and co-dimensional bifurcations in a class of piecewise-smooth discontinuous maps. Acta Physica Sinica, doi: 10.7498/aps.75.20251167
    [2] GUO Qun, XU Ying. Dynamics and energy dissipation analysis of a memristive neural circuit lossing capacitors. Acta Physica Sinica, doi: 10.7498/aps.75.20251114
    [3] Hu Yue, Cao Feng-Zhao, Dong Ren-Jing, Hao Chen-Yue, Liu Da-He, Shi Jin-Wei. Analysis of stability catastrophe of confocal cavity. Acta Physica Sinica, doi: 10.7498/aps.69.20200814
    [4] Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei. Stability analysis in three-terminal magnetic tunnel junction. Acta Physica Sinica, doi: 10.7498/aps.68.20190927
    [5] Wu Jie-Ning, Wang Li-Dan, Duan Shu-Kai. A memristor-based time-delay chaotic systems and pseudo-random sequence generator. Acta Physica Sinica, doi: 10.7498/aps.66.030502
    [6] Lan Chun-Bo, Qin Wei-Yang, Li Hai-Tao. Broadband energy harvesting from coherence resonance of a piezoelectric bistable system and its experimental validation. Acta Physica Sinica, doi: 10.7498/aps.64.080503
    [7] Wang Ri-Xing, He Peng-Bin, Xiao Yun-Chang, Li Jian-Ying. Stability of magnetization states in a ferromagnet/heavy metal bilayer structure. Acta Physica Sinica, doi: 10.7498/aps.64.137201
    [8] Sun Di-Hua, Kang Yi-Rong, Li Hua-Min. Analysis of evolution mechanism of traffic energy dissipation by considering driver’s forecast effect. Acta Physica Sinica, doi: 10.7498/aps.64.154503
    [9] Li Hai-Tao, Qin Wei-Yang. Coherence resonance of nonlinear piezoelectric energy harvester under broadband random excitation. Acta Physica Sinica, doi: 10.7498/aps.63.120505
    [10] Li Hai-Tao, Qin Wei-Yang, Zhou Zhi-Yong, Lan Chun-Bo. Coherence resonance of piezoelectric energy harvester with fractional damping. Acta Physica Sinica, doi: 10.7498/aps.63.220504
    [11] Ding Xue-Li, Li Yu-Ye. Phase noise induced single or double coherence resonances of neural firing. Acta Physica Sinica, doi: 10.7498/aps.63.248701
    [12] Dong Xiao-Juan, Yan Ai-Jun. The relationship between stochastic resonance and coherence resonance in a bi-stable system. Acta Physica Sinica, doi: 10.7498/aps.62.070501
    [13] Zhang Li-Dong, Jia Lei, Zhu Wen-Xing. Curved road traffic flow car-following model and stability analysis. Acta Physica Sinica, doi: 10.7498/aps.61.074501
    [14] Sun Ning, Zhang Hua-Guang, Wang Zhi-Liang. Fractional sliding mode surface controller for projective synchronization of fractional hyperchaotic systems. Acta Physica Sinica, doi: 10.7498/aps.60.050511
    [15] Liu Zhi-Hong, Zhou Yu-Rong, Zhang An-Ying, Pang Xiao-Feng. Coherence resonance in a nonlinear neuronal models driven by correlated colored noise. Acta Physica Sinica, doi: 10.7498/aps.59.699
    [16] Wei Gao-Feng, Li Kai-Tai, Feng Wei, Gao Hong-Fen. Stability and convergence analysis of incompatible numerical manifold method. Acta Physica Sinica, doi: 10.7498/aps.57.639
    [17] Yi Ming, Jia Ya, Liu Quan, Zhan Xuan. Molecular noise induced circadian oscillation and coherence resonance in the gene network of biological clock. Acta Physica Sinica, doi: 10.7498/aps.57.621
    [18] Zhou Xiao-Rong, Luo Xiao-Shu. Coherence resonance in neural networks with small-world connections. Acta Physica Sinica, doi: 10.7498/aps.57.2849
    [19] Song Yang, Zhao Tong-Jun, Liu Jin-Wei, Wang Xiang-Qun, Zhan Yong. Impact of Gaussian white noise on a two-dimensional neural map. Acta Physica Sinica, doi: 10.7498/aps.55.4020
    [20] Wang Tao, Gao Zi-You, Zhao Xiao-Mei. Multiple velocity difference model and its stability analysis. Acta Physica Sinica, doi: 10.7498/aps.55.634
Metrics
  • Abstract views:  27
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  14 December 2025
  • /

    返回文章
    返回
    Baidu
    map