Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The Bonder Collision Bifurcations and Co-dimensional Bifurcations in A Class of Piecewise-Smooth Discontinuous Maps

DENG Haozhou WANG Like ZHU Zhaorui WANG Hengtong QU Shi-Xian

Citation:

The Bonder Collision Bifurcations and Co-dimensional Bifurcations in A Class of Piecewise-Smooth Discontinuous Maps

DENG Haozhou WANG Like ZHU Zhaorui WANG Hengtong QU Shi-Xian,
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The investigation of chaos is an important field of science and has got many significant achievements. In the earlier age of the field, the main focus is on the study of the systems that are smooth everywhere. Less attention has been paid to nonsmooth systems. Nonsmooth dynamical systems are broadly appeared in practices, such as impact oscillators, relaxation oscillators, switch circuits, neuron firing, epidemic and even economic models, and have become an active field of study recently. The typical characteristics of those systems is the abruptly variation of the dynamics after slowly evolving over a longer time. Piecewise smooth maps are a type of important models and often employed to describe the dynamics of those systems. Among them, much attention is paid to a class of generally one dimensional piecewise linear discontinuous maps since they are easy to hand and can display rich classes of dynamical phenomena with new characteristics.
    Enclosed in this work is a discontinuous two-piece mapping function. The left branch is a linear function with slope $\alpha$, and the right is a power law function with exponent $z$. There is a gap confined by $[\mu,\mu+\delta]$ at $x=0$, where $\mu$ is the control parameter, and $\delta$ is the with of the gap. Even though the dynamics of nonsmooth and continuous maps under some special $z$ values have been intensively studied, while their discontinuous counterparts have not been investigated under arbitrary $z$ and discontinuous gap $\delta$. The appearance of the discontinuity may induce border collision bifurcations. The interplay between the bifurcations associated with stability analysis and the border collision bifurcations may produce complex dynamics with new characteristics. Therefore, the investigation on the dynamics of those maps are carried out in this paper, in which the periodic increments, periodic adding and coexistence of attractors are observed. The border collision bifurcation often interrupts a stable periodic orbit and make it transform to a chaotic state or another periodic orbit. In the neighborhood of critical parameters of this bifurcation, there often occurs the coexistence of a periodic orbit with a chaotical or another periodic attractor. A general approach is proposed to analytically and numerically calculate the critical control parameters at which the border collision bifurcations happen, which transform the problem into the solution of an algebraic equation of dimensionless control parameter $\mu/\mu_0$, where $\mu_0$ is the critical control parameter when $\delta=0$. The solution can be obtained analytically when $z$ is a simple rational number or small integer, and numerically for an arbitrary real number. By this way, the stability condition and critical control parameters for the periodic orbit of type $L^{n-1}R$ are analytically or numerically obtained under the arbitrary exponent $z$ and discontinuous gap $\delta$. The results are accordance with the numerical simulations very well. Based on the stability and border collision bifurcation analysis, the phase diagrams in the plane of two dimensional parameters $\mu-\delta$ are built for different ranges of $z$. Their dynamical behaviors are discussed, and three types of co-dimension-2 bifurcations are observed, and the general expressions for the coordinates at which those phenomena occur are obtained in the phase plane. Meanwhile, a specular tripe-point induced by merging of co-dimension-2 bifurcation points $\mathrm{BC-flip}$ and $\mathrm{BC-BC}$ is observed in the phase plane, and the condition for the appearance of it is analytical obtained.
  • [1]

    Makarenkov O, Lamb J S W 2012 Physica D: Nonlinear Phenomena 241 1826

    [2]

    Qin Z Y, Yang J C, Banerjee S, Jiang G R 2011 Discrete and Continuous Dynamical Systems-B 16 547

    [3]

    Biswas D, Seth S, Bor M 2020 International Journal of Bifurcation and Chaos 30 2050018

    [4]

    Metri R A, Mounica M, Rajpathak B A 2020 In 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC) (IEEE), pp 1–6

    [5]

    Metri R, Rajpathak B, Pillai H 2023 Nonlinear Dynamics 111 9395

    [6]

    Shen Y Z, Zhang Y X 2019 Nonlinear Dynamics 96 1405

    [7]

    Zhao Y F, Zhang Y X 2023 Chaos, Solitons & Fractals 171 113491

    [8]

    Nordmark A B 1991 Journal of Sound and Vibration 145 279

    [9]

    He D R, Habip S, Bauer M, Krueger U, Martienssen W, Christiansen B, Wang B H 1993 Acta Phys. Sin. 42 711. (in Chainese) [ 何大韧, Habip, S., Bauer, M., Krueger, U., Martienssen, W., Christiansen, B., 汪秉宏 1993 42 711 ]

    [10]

    He D R, Wang B H, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B 1994 Physica D: Nonlinear Phenomena 79 335

    [11]

    Tse C K 1994 IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 41 16

    [12]

    Zou Y L, Luo X S, Chen G R 2006 Chinese Physics 15 1719

    [13]

    Avrutin V, Zhusubaliyev Z T 2020 International Journal of Bifurcation and Chaos 30 2030015

    [14]

    Cardin P T 2022 Chaos: An Interdisciplinary Journal of Nonlinear Science 32 013104

    [15]

    Wang D, Mo J, Zhao X Y, Gu H G, Qu S X, Ren W 2010 Chinese Physics Letters 27 070503

    [16]

    Gu H G 2013 Chaos: An Interdisciplinary Journal of Nonlinear Science 23 023126

    [17]

    Carvalho T, Cristiano R, Rodrigues D S, Tonon D J 2021 Nonlinear Dynamics 105 3763

    [18]

    Panchuk A, Sushko I, Westerhoff F 2018 Chaos: An Interdisciplinary Journal of Nonlinear Science 28 055908

    [19]

    Banerjee S, Grebogi C 1999 Physical Review E 59 4052

    [20]

    di Bernardo M, Hogan S J 2010 Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368 4915

    [21]

    Qu S X, Lu Y Z, Zhang L, He D R 2008 Chinese Physics B 17 4418

    [22]

    Simpson D J W 2016 Siam Review 58 177

    [23]

    Nusse H E, Yorke J A 1992 Physica D: Nonlinear Phenomena 57 39

    [24]

    Nusse H E, Ott E, Yorke J A 1994 Physical Review E 49 1073

    [25]

    Nusse H E, Yorke J A 1995 International journal of bifurcation and chaos 5 189

    [26]

    He D R, Bauer M, Habip S, Krueger U, Martienssen W, Christiansen B, Wang B H 1992 Physics Letters A 171 61

    [27]

    Qu S X, Christiansen B, He D R 1995 Acta Phys. Sin. 44 841. (in Chainese) [ 屈世显, Christiansen, B., 何大韧 1995 44 841 ]

    [28]

    Qu S X, Wu S G, He D R 1998 Physical Review E 57 402

    [29]

    Wang W X, Ma M Q, Wu Y P, Zhu Y Z, He D R 2001 Acta Phys. Sin. 50 1226. (in Chainese) [王文秀, 马明全, 吴永萍, 竹有章, 何大韧 2001 50 1226 ]

    [30]

    Dai j, Chu X S, He D R 2006 Acta Phys. Sin. 55 3979. (in Chainese) [ 戴俊, 褚翔升, 何大韧 2006 物 理学报 55 3979 ]

    [31]

    Elaskar S, del Rio E, Schulz W 2022 Symmetry 14 2519

    [32]

    Qu S X, Christiansen B, He D R 1995 Physics Letters A 201 413

    [33]

    Avrutin V, Panchuk A, Sushko I 2021 Proceedings of the Royal Society A 477 20210432

    [34]

    Jain P, Banerjee S 2003 International Journal of Bifurcation and Chaos 13 3341

    [35]

    Halse C, Homer M, di Bernardo M 2003 Chaos, Solitons & Fractals 18 953

    [36]

    Hogan S J, Higham L, Griffn T C L 2007 Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463 49

    [37]

    Dutta P S, Banerjee S 2010 Discrete and Continuous Dynamical Systems-B 14 961

    [38]

    KOWALCZYK P, DI BERNARDO M, CHAMPNEYS A R, HOGAN S J, HOMER M, PIIROINEN P T, KUZNETSOV Y A, NORDMARK A 2006 International Journal of Bifurcation and Chaos 16 601

    [39]

    Avrutin V, Schanz M, Banerjee S 2007 Physical Review E 75 066205

    [40]

    Qin Z Y, Zhao Y J, Yang J C 2012 International Journal of Bifurcation and Chaos 22 1250112

    [41]

    Gardini L, Avrutin V, Sushko I 2014 International Journal of Bifurcation and Chaos 24 1450024

    [42]

    Wang Z, Zhang C, Bi Q 2024 Chaos, Solitons & Fractals 184 115040

    [43]

    Stiefenhofer P 2025 Physics Letters A 560 130935

    [44]

    Yamaguchi Y Y, Barré J 2023 Phys. Rev. E 107 054203

    [45]

    Liu X, Liu P, Liu Y 2022 AIMS Mathematics 7 3360

  • [1] Wan Bing-Bing, Hu Wei-Bo, Li Xiao-Hu, Huang Wen-Feng, Chen Jian-Qiang, Tu Guo-Hua. Three-dimensional receptivity of high-speed blunt cone to different types of freestream disturbances. Acta Physica Sinica, doi: 10.7498/aps.73.20241383
    [2] Hu Yue, Cao Feng-Zhao, Dong Ren-Jing, Hao Chen-Yue, Liu Da-He, Shi Jin-Wei. Analysis of stability catastrophe of confocal cavity. Acta Physica Sinica, doi: 10.7498/aps.69.20200814
    [3] Wang Ri-Xing, Li Xue, Li Lian, Xiao Yun-Chang, Xu Si-Wei. Stability analysis in three-terminal magnetic tunnel junction. Acta Physica Sinica, doi: 10.7498/aps.68.20190927
    [4] Wu Jie-Ning, Wang Li-Dan, Duan Shu-Kai. A memristor-based time-delay chaotic systems and pseudo-random sequence generator. Acta Physica Sinica, doi: 10.7498/aps.66.030502
    [5] Wu Zheng-Ren, Liu Mei, Liu Qiu-Sheng, Song Zhao-Xia, Wang Si-Si. Influence of the inclined waving wall on the surface wave evolution of liquid film. Acta Physica Sinica, doi: 10.7498/aps.64.244701
    [6] Sun Di-Hua, Kang Yi-Rong, Li Hua-Min. Analysis of evolution mechanism of traffic energy dissipation by considering driver’s forecast effect. Acta Physica Sinica, doi: 10.7498/aps.64.154503
    [7] Shi Guo-Dong, Zhang Hai-Ming, Bao Bo-Cheng, Feng Fei, Dong Wei. Dynamical modeling and multi-periodic behavior analysis on pulse train controlled DCM-DCM BIFRED converter. Acta Physica Sinica, doi: 10.7498/aps.64.010501
    [8] Wang Ri-Xing, He Peng-Bin, Xiao Yun-Chang, Li Jian-Ying. Stability of magnetization states in a ferromagnet/heavy metal bilayer structure. Acta Physica Sinica, doi: 10.7498/aps.64.137201
    [9] Yang Ke-Li. Period-adding bifurcations in a discontinuous system with a variable gap. Acta Physica Sinica, doi: 10.7498/aps.64.120502
    [10] Zhong Shu, Sha Jin, Xu Jian-Ping, Xu Li-Jun, Zhou Guo-Hua. Low-frequency oscillation of continuous conduction mode buck converter with pulse skipped modulation. Acta Physica Sinica, doi: 10.7498/aps.63.198401
    [11] Yang Ping, Xu Jian-Ping, He Sheng-Zhong, Bao Bo-Cheng. Dynamics of current controlled quadratic boost converters. Acta Physica Sinica, doi: 10.7498/aps.62.160501
    [12] Wu Song-Rong, He Sheng-Zhong, Xu Jian-Ping, Zhou Guo-Hua, Wang Jin-Ping. Dynamical modeling and multi-period behavior analysis of voltage-mode bi-frequency controlled switching converter. Acta Physica Sinica, doi: 10.7498/aps.62.218403
    [13] Bao Bo-Cheng, Yang Ping, Ma Zheng-Hua, Zhang Xi. Dynamics of current controlled switching converters under wide circuit parameter variation. Acta Physica Sinica, doi: 10.7498/aps.61.220502
    [14] Zhang Li-Dong, Jia Lei, Zhu Wen-Xing. Curved road traffic flow car-following model and stability analysis. Acta Physica Sinica, doi: 10.7498/aps.61.074501
    [15] Sha Jin, Bao Bo-Cheng, Xu Jian-Ping, Gao Yu. Dynamical modeling and border collision bifurcation in pulse train controlled discontinuous conduction mode buck converter. Acta Physica Sinica, doi: 10.7498/aps.61.120501
    [16] Sun Ning, Zhang Hua-Guang, Wang Zhi-Liang. Fractional sliding mode surface controller for projective synchronization of fractional hyperchaotic systems. Acta Physica Sinica, doi: 10.7498/aps.60.050511
    [17] Yang Tan, Jin Yue-Hui, Cheng Shi-Duan. Border collision bifurcation and chaotic control of discrete feedback transmission control protocol-random early detection system. Acta Physica Sinica, doi: 10.7498/aps.58.5224
    [18] Wei Gao-Feng, Li Kai-Tai, Feng Wei, Gao Hong-Fen. Stability and convergence analysis of incompatible numerical manifold method. Acta Physica Sinica, doi: 10.7498/aps.57.639
    [19] Wang Tao, Gao Zi-You, Zhao Xiao-Mei. Multiple velocity difference model and its stability analysis. Acta Physica Sinica, doi: 10.7498/aps.55.634
    [20] Dai Dong, Ma Xi-Kui, Li Xiao-Feng. Border collision bifurcations and chaos in a class of piecewise smooth systems w ith two boundaries. Acta Physica Sinica, doi: 10.7498/aps.52.2729
Metrics
  • Abstract views:  47
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Received Date:  25 August 2025
  • Accepted Date:  19 October 2025
  • Available Online:  22 October 2025
  • /

    返回文章
    返回
    Baidu
    map