搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无电容器嵌入的忆阻神经元电路的动力学与能耗分析

郭群 徐莹

引用本文:
Citation:

无电容器嵌入的忆阻神经元电路的动力学与能耗分析

郭群, 徐莹

Dynamics and energy dissipation analysis of a memristive neural circuit lossing capacitors

GUO Qun, XU Ying
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 神经形态计算的硬件实现,正从传统架构转向对生物神经元内在物理机制的更精细模拟。聚焦于电场-磁场能量交换这一核心过程,本文提出一种基于荷控忆阻器的无电容嵌入式神经元电路设计方法。通过构建无量纲动力学方程并采用雅可比矩阵特征值分析,验证了该模型的稳定性特征。研究结果表明,该模型不仅可通过外界刺激、反转电位及离子通道导通性等参数灵活调控神经元放电模式,还展现出良好的噪声鲁棒性与能量效率。进一步地,通过电阻参数优化策略,电路能耗得到显著控制。本研究为发展高集成度、低能耗的下一代神经形态计算电路提供了理论支撑与设计参考。
    To address the issues of high dynamic power consumption and substantial occupation of silicon integration resources in traditional capacitor-containing neuronal circuits, this study proposes a capacitor-free neuronal circuit based on a charge-controlled memristor. By taking the intrinsic parameters of the charge-controlled memristor as the reference for scaling transformation, dimensionless dynamical equations were derived. The local asymptotic stability of the system was verified using Jacobian matrix eigenvalue decomposition and the Routh-Hurwitz criterion. Gaussian white noise was introduced to simulate interference for detecting coherent resonance, while energy characteristics were analyzed by combining Hamiltonian energy formulas and resistance energy consumption expressions. Additionally, the fourth-order Runge-Kutta method was employed to conduct numerical simulations.
    The research results indicate that external stimuli, ionic channel conductance, and reversal potential can flexibly regulate the periodic/chaotic firing modes of the neuron. In the periodic state, the proportion of electric field energy of the charge-controlled memristor in the total energy is higher; in the chaotic state, however, the proportion of magnetic field energy of the inductive coils increases. The circuit exhibits coherent resonance under the influence of noise, and resistor is the main energy-consuming component. The conclusion confirms that the circuit is feasible in principle, with rich dynamical characteristics and good noise robustness. Changing the resistance value can improve energy efficiency while retaining multiple firing modes, which provides theoretical support and an optimization direction for the design of high-integration, low-power neuromorphic computing circuits.
  • [1]

    Izhikevich E M 2003 IEEE Trans. Neural Netw. 14 1569

    [2]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [3]

    Fitzhugh R 1960 J. Gen. Physiol. 43 867

    [4]

    Feali M S 2025 AEU-Int. J. Electron. Commun. 191 155679

    [5]

    Harerimana G, Kim I G, Kim J W, Jang B 2023 IEEE Access 11 106334

    [6]

    Chen C A, Mathalon D H, Roach B J, Cavus I, Spencer D D, Ford J M 2011 J. Cogn. Neurosci. 23 2892

    [7]

    Montano N, Furlan R, Guzzetti S, McAllen R M, Julien C 2009 Phil. Trans. R. Soc. A 367 1265

    [8]

    Shao J, Liu Y H, Gao D S, Tu J, Yang F 2021 Front. Cell. Neurosci. 15 741292

    [9]

    Koch N A, Sonnenberg L, Hedrich U B, Lauxmann S, Benda J 2023 Front. Neurol. 14 1194811

    [10]

    Dai Y, Cheng Y, Fedirchuk B, Jordan L M, Chu J H 2018 J. Neurophysiol. 120 1840

    [11]

    Velasco E, Alvarez J L, Meseguer V M, Gallar J, Talavera Karel 2022 Pain 163 64

    [12]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [13]

    Xu Y H, Zhang S, Zhao Q Y, You S N, Dun W J, Zhao M K, Xu G Z 2023 Life Sci. Instrum. 21 64 [徐亦豪,张帅,赵清扬,由胜男,杜文静2023生命科学仪器21 64]

    [14]

    Bao H, Xi M Q, Tang H G, Zhang X, Xu Q, Bao B C 2025 IEEE Trans. Ind. Inform. 21 1862

    [15]

    Zhang D K, Li Y Q, Rasch M J, Wu S 2013 Front. Comput. Neurosci. 7 56

    [16]

    Kobylarz T J, Kobylarz E J 2021 Clin. Neurophysiol. 132 e1

    [17]

    Wang Y Q, Ding G H, Yao W 2023 Applied Math 3 758

    [18]

    Yuan Z X, Feng P H, Fan Y C, Yu Y Y, Wu Y 2022 Cogn. Neurodyn. 16 183

    [19]

    Zhang S, Cui K, Shi X, Wang Z, Xu G Z 2019 Trans. China Electrotech. Soc. 34 3741 [张帅,崔琨,史勋,王卓,徐桂芝2019电工技术学报34 3741]

    [20]

    Yang F F, Song X L, Yu Z H 2024 Chaos Soliton. Fract. 188 115496

    [21]

    Chen Y X, Guo Q, Zhang X F, Wang C N 2024 Chaos Soliton. Fract. 189 115738

    [22]

    Kumar P, Erturk V S 2025 Chin. Phys. B 34 018704

    [23]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 116 473

    [24]

    Hodgkin, A L, Huxley, A F 1952 J. Physiol. 116 497

    [25]

    FitzHugh R 1961 Biophys. J.1 445

    [26]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061

    [27]

    Izhikevich E M 2004 IEEE Trans. Neural Netw. 15 1063

    [28]

    Izhikevich E M, Edelman G M 2008 Proc. Natl. Acad. Sci. U.S.A. 105 3593

    [29]

    Li X Y, Min F H, Xiang W K, Cao Y 2023 J. Nanjing Norm. Univ. (Eng. Technol. Ed.) 23 1 [李馨雅,闵富红,相惟康,曹弋 2023南京师范大学学报(工程技术版)23 1]

    [30]

    Bao H, Zhang J, Wang N, Kuznetsov NV, Bao B C 2022 Chaos 32 123101

    [31]

    Wang S C, Lu Z Z, Liang Y, Wang G Y 2022 Acta Phys. Sin. 71 050502 [王世场,卢振洲,梁燕,王光义2022 71 050502]

    [32]

    Zhang S H, Wang C, Zhang H L, Lin H R 2023 Chaos 33 083138

    [33]

    Jeyasothy A, Sundaram S, Sundarajan N 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 1231

    [34]

    Wang B C, Lv M, Zhang X, Ma J 2024 Phys. Scr. 99 055225

    [35]

    Jia J E, Yang F F, Ma J 2024 Chaos Soliton. Fract. 173 113689

    [36]

    Jia J E, Wang C N, Ren G D 2025 Chin. J. Phys. 95 978

    [37]

    Li R H, Ding R H. 2021 Int. J. Mod. Phys. B 35 2150166

    [38]

    Xu L, Qi G, Ma J 2022 Appl. Math. Model. 101 503

    [39]

    Yakopcic C, Hasan R, Taha T M, McLean M, Palmer D 2014 Electron. Lett. 50 492

    [40]

    Shi S Y, Liang Y, Li Y Q, Lu Z Z, Dong Y J 2024 Chaos Soliton. Fract. 180 114534

    [41]

    Shen H, Yu F, Wang C H, Sun J R, Cai S 2022 Nonlinear Dyn. 110 3807

    [42]

    Miranda E, Sune J 2020 Materials 13 938

    [43]

    Yang F F, Ma J, Wu F Q 2024 Chaos Soliton. Fract. 187 115361

    [44]

    Li Y N, Guo Q, Wang C N, Ma J 2024 Commun. Nonlinear Sci. Numer. Simul. 139 108320

    [45]

    Yu J, Li C, Zhang X M, Liu Q, Liu M 2025 Sci. China Inf. Sci. 55 749 [余杰,李超,张续猛,刘琦,刘明 2025 中国科学:信息科学 55 749]

    [46]

    Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin.73 207302 [贡以纯,明建宇,吴思齐,仪明东,解令海,黄维,凌海峰 2024 73 207302]

    [47]

    Ma D, Jin X F, Sun S C, Li Y T, Wu X D, Hu Y N, Yang F C, Tang H J, Zhu X L, Lin P, Pan G 2024 Natl. Sci. Rev. 11 nwae102

    [48]

    Sun B, Guo C B, Cui C Q, Zhang G H 2021 Microelectron. Reliab. 121 114123

    [49]

    Hernandez-Balaguera E, Vara H, Polo J L 2018 J. Electrochem. Soc. 165 G3099

    [50]

    Kim D, Kwon K, Kim Hea, Jin S, Yang H, Kim J, Park J 2019 ECS Meet. Abstr. MA2019-01 1169

    [51]

    Lee J, Cha M, Kwon M 2023 Appl. Sci. 13 2628

    [52]

    Joop M K, Azghadi M R, Behbahani F, Al-Shidaifat A, Song H J 2023 IEEE Access 11 133451

    [53]

    Zhou P J, Zuo Y, Qiao G C, Zhang C M, Zhang Z, Meng L W, Yu Q, Liu Y, Hu G S 2023 IEEE Trans. Biomed. Circuits Syst.17 1319

    [54]

    Yang F F, Song X L, Ma J 2024 Chin. J. Phys. 91 287

  • [1] 邓浩洲, 王力可, 朱兆瑞, 王恒通, 屈世显. 一类分段光滑不连续映象中的边界碰撞分岔和余维分岔.  , doi: 10.7498/aps.75.20251167
    [2] 万兵兵, 胡伟波, 李晓虎, 黄文锋, 陈坚强, 涂国华. 高速钝锥对不同类型来流扰动的三维感受性.  , doi: 10.7498/aps.73.20241383
    [3] 胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫. 共焦腔稳定性突变的分析.  , doi: 10.7498/aps.69.20200814
    [4] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析.  , doi: 10.7498/aps.68.20190927
    [5] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器.  , doi: 10.7498/aps.66.030502
    [6] 蓝春波, 秦卫阳, 李海涛. 随机激励下双稳态压电俘能系统的相干共振及实验验证.  , doi: 10.7498/aps.64.080503
    [7] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析.  , doi: 10.7498/aps.64.137201
    [8] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究.  , doi: 10.7498/aps.64.154503
    [9] 李海涛, 秦卫阳. 宽频随机激励下非线性压电能量采集器的相干共振.  , doi: 10.7498/aps.63.120505
    [10] 李海涛, 秦卫阳, 周志勇, 蓝春波. 带有分数阶阻尼的压电能量采集系统相干共振.  , doi: 10.7498/aps.63.220504
    [11] 丁学利, 李玉叶. 相位噪声诱发神经放电的单次或两次相干共振.  , doi: 10.7498/aps.63.248701
    [12] 董小娟, 晏爱君. 双稳态系统中随机共振和相干共振的相关性.  , doi: 10.7498/aps.62.070501
    [13] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析.  , doi: 10.7498/aps.61.074501
    [14] 孙宁, 张化光, 王智良. 基于分数阶滑模面控制的分数阶超混沌系统的投影同步.  , doi: 10.7498/aps.60.050511
    [15] 刘志宏, 周玉荣, 张安英, 庞小峰. 色关联噪声驱动下非线性神经元模型的相干共振.  , doi: 10.7498/aps.59.699
    [16] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析.  , doi: 10.7498/aps.57.639
    [17] 易 鸣, 贾 亚, 刘 泉, 詹 璇. 生物钟基因网络中分子噪声诱导的日夜节律振荡及相干共振.  , doi: 10.7498/aps.57.621
    [18] 周小荣, 罗晓曙. 小世界生物神经网络的相干共振研究.  , doi: 10.7498/aps.57.2849
    [19] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响.  , doi: 10.7498/aps.55.4020
    [20] 王 涛, 高自友, 赵小梅. 多速度差模型及稳定性分析.  , doi: 10.7498/aps.55.634
计量
  • 文章访问数:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-01

/

返回文章
返回
Baidu
map