-
Investigating molecular fragmentation mechanisms and the kinetic energy distributions of fragments can offer crucial insights into their roles in plasma physics, radiation-induced damage in biological tissues, and interstellar chemistry. In this study, we conduct the experiments on collision between 3 keV/u ${\rm Ar}^{8+} $ ions and CH3F molecules by using a cold target recoil ion momentum spectrometer (COLTRIMS). We focus on the three-body fragmentation channel H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ resulting from C—F and C—H bond cleavage in CH3F3+ ions, and measure the three-dimensional momentum vectors of all fragment ions. The fragmentation mechanism involved is analyzed using ion-ion kinetic energy correlation spectra, Newton diagrams, Dalitz plots, and other correlation spectra. Our results reveal two different dissociation mechanisms for the H++$ {\mathrm{C}\mathrm{H}}_{2}^{+} $+F+ channel, i.e. concerted fragmentation and sequential fragmentation, with the former one being dominant. In the sequential fragmentation process, H+ and the intermediate CH2F2+ are firstly formed, followed by further fragmentation of the intermediates into $ {\mathrm{C}\mathrm{H}}_{2}^{+} $ and F+. No sequential pathways involving HF2+ or $ {\mathrm{C}\mathrm{H}}_{3}^{2+} $ intermediates are identified. Furthermore, we observe two types of concerted fragmentation processes with different dynamical characteristics, suggesting that hydrogen atoms in CH3F3+ may occupy different chemical environments. This phenomenon can originate from either molecular isomerization producing different structural geometries or the Jahn-Teller effect leading to inequivalent C—H bonds. This study reveals the three-body dissociation dynamics of CH3F3+ induced by highly charged ion collisions, highlighting the significant role of the Jahn-Teller effect or molecular isomerization in the ionic dissociation of polyatomic molecules. -
Keywords:
- fluoromethane /
- dissociative ionization /
- three-body fragmentation /
- cold target recoil ion momentum spectrometer
[1] Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264
Google Scholar
[2] Reiter D, Janev R K 2010 Contrib. Plasma Phys. 50 986
Google Scholar
[3] Wheatley A K, Juno J A, Wang J J, Selva K J, Reynaldi A, Tan H X, Lee W S, Wragg K M, Kelly H G, Esterbauer R, Davis S K, Kent H E, Mordant F L, Schlub T E, Gordon D L, Khoury D S, Subbarao K, Cromer D, Gordon T P, Chung A W, Davenport M P, Kent S J 2021 Nat. Commun. 12 1162
Google Scholar
[4] Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062
Google Scholar
[5] Price S D, Roithová J 2011 Phys. Chem. Chem. Phys. 13 18251
Google Scholar
[6] Matsika S, Spanner M, Kotur M, Weinacht T C 2013 J. Phys. Chem. A 117 12796
Google Scholar
[7] Ren B H, Ma P F, Zhang Y, Wei L, Han J, Xia Z H, Wang J R, Meng T M, Yu W D, Zou Y M, Yang C L, Wei B R 2022 Phys. Rev. A 106 012805
Google Scholar
[8] Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129
Google Scholar
[9] 张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文 2025 74 063401
Google Scholar
Zhang Z Q, Yan S C, Tao C Y, Yu X, Zhang S F, Ma X W 2025 Acta Phys. Sin. 74 063401
Google Scholar
[10] Das R, Bhojani A K, Madhusudhan P, Nimma V, Bhardwaj P, Singh D K, Kushawaha R K 2025 J. Phys. B: At. Mol. Opt. Phys. 58 045603
Google Scholar
[11] Wang E L, Shan X, Chen L, Pfeifer T, Chen X J, Ren X G, Dorn A 2020 J. Phys. Chem. A 124 2785
Google Scholar
[12] Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703
Google Scholar
[13] Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303
Google Scholar
[14] Wang B, Han J, Zhu X L, Wei L, Ren B H, Zhang Y, Yu W D, Yan S C, Ma X W, Zou Y M, Chen L, Wei B R 2021 Phys. Rev. A 103 042810
Google Scholar
[15] Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju K P, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001
Google Scholar
[16] Burger C, Kling N G, Siemering R, Alnaser A S, Bergues B, Azzeer A M, Moshammer R, de Vivie-Riedle R, Kübel M, Kling M F 2016 Faraday Discuss. 194 495
Google Scholar
[17] Hishikawa A, Matsuda A, Takahashi E J, Fushitani M 2008 J. Chem. Phys. 128 084302
Google Scholar
[18] Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215
Google Scholar
[19] Das R, Pandey D K, Soumyashree S, Madhusudhan P, Nimma V, Bhardwaj P, Muhammed S K M, Singh D K, Kushawaha R K 2022 Phys. Chem. Chem. Phys. 24 18306
Google Scholar
[20] Townsend D, Lahankar S A, Lee S K, Chambreau S D, Suits A G, Zhang X, Rheinecker J, Harding L B, Bowman J M 2004 Science 306 1158
Google Scholar
[21] Nakai K, Kato T, Kono H, Yamanouchi K 2013 J. Chem. Phys. 139 181103
Google Scholar
[22] Castrovilli M C, Trabattoni A, Bolognesi P, O’Keeffe P, Avaldi L, Nisoli M, Calegari F, Cireasa R 2018 J. Phys. Chem. Lett. 9 6012
Google Scholar
[23] Ma P, Wang C C, Li X K, Yu X T, Tian X, Hu W H, Yu J Q, Luo S Z, Ding D J 2017 J. Chem. Phys. 146 244305
Google Scholar
[24] Kokkonen E, Vapa M, Bučar K, Jänkälä K, Cao W, Žitnik M, Huttula M 2016 Phys. Rev. A 94 033409
Google Scholar
[25] Masuoka T, Koyano I 1991 J. Chem. Phys. 95 909
Google Scholar
[26] Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156
Google Scholar
[27] Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201
Google Scholar
[28] Walsh N, Sankari A, Laksman J, Andersson T, Oghbaie S, Afaneh F, Månsson E P, Gisselbrecht M, Sorensen S L 2015 Phys. Chem. Chem. Phys. 17 18944
Google Scholar
[29] Zhou J Q, Li Y T, Wang Y Y, Jia S K, Xue X R, Yang T, Zhang Z, Dorn A, Ren X G 2021 Phys. Rev. A 104 032807
Google Scholar
[30] Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701
Google Scholar
[31] Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708
Google Scholar
[32] Pearson R G 1975 Proc. Nat. Acad. Sci. USA 72 2104
Google Scholar
[33] Bersuker I B 2001 Chem. Rev. 101 1067
Google Scholar
[34] Bersuker I B 2021 Chem. Rev. 121 1463
Google Scholar
[35] Wörner H J, Merkt F 2009 Angew. Chem. Int. Ed. 48 6404
Google Scholar
[36] Jahn H A, Teller E 1937 Proc. R. Soc. London Ser. A 161 220
Google Scholar
[37] Matselyukh D, Svoboda V, Wörner H J 2025 Nat. Commun. 16 6540
Google Scholar
[38] Wang J G, Dong B W, Zhang M, Deng Y K, Jian X P, Li Z, Liu Y Q 2024 J. Am. Chem. Soc. 146 10443
Google Scholar
[39] Kugel' K I, Khomskiĭ D I 1982 Sov. Phys. Usp. 25 231
Google Scholar
[40] O’Brien M C, Chancey C C 1993 Am. J. Phys. 61 688
Google Scholar
[41] Zhou J Q, Wu L, Belina M, Skitnevskaya A D, Jia S K, Xue X R, Hao X T, Zeng Q R, Ma Q B, Zhao Y T, Li X K, He L H, Luo S Z, Zhang D D, Wang C C, Trofimov A B, Slavíček P, Ding D J, Ren X G 2025 Nat. Commun. 16 5838
Google Scholar
[42] Zhao X N, Zhang X Y, Liu H, Ma P, Li X K, Wang C C, Luo S Z, Ding D J 2025 Phys. Rev. A 111 053106
Google Scholar
[43] Zhou J Q, Belina M, Jia S K, Xue X R, Hao X T, Ren X G, Slavíček P 2022 J. Phys. Chem. Lett. 13 10603
Google Scholar
[44] Yuan H, Gao Y, Yang B, Gu S F, Lin H, Guo D L, Liu J L, Zhang S F, Ma X W, Xu S Y 2024 Phys. Rev. Lett. 133 193002
Google Scholar
[45] Duflot D, Robbe J M, Flament J P 1995 J. Chem. Phys. 103 10571
Google Scholar
[46] Matsubara T 2023 J. Phys. Chem. A 127 4801
Google Scholar
-
图 6 $ {\mathrm{K}\mathrm{E}\mathrm{R}}_{{\mathrm{H}\mathrm{F}}^{2+}} $和$ {\theta }_{{\mathrm{C}\mathrm{H}}_{2}^{+}, {\mathrm{H}}^{+}} $的关联谱
Figure 6. Correlation spectrum of $ {\mathrm{K}\mathrm{E}\mathrm{R}}_{{\mathrm{H}\mathrm{F}}^{2+}} $and $ {\theta }_{{\mathrm{C}\mathrm{H}}_{2}^{+}, {\mathrm{H}}^{+}} $.
-
[1] Thissen R, Witasse O, Dutuit O, Wedlund C S, Gronoff G, Lilensten J 2011 Phys. Chem. Chem. Phys. 13 18264
Google Scholar
[2] Reiter D, Janev R K 2010 Contrib. Plasma Phys. 50 986
Google Scholar
[3] Wheatley A K, Juno J A, Wang J J, Selva K J, Reynaldi A, Tan H X, Lee W S, Wragg K M, Kelly H G, Esterbauer R, Davis S K, Kent H E, Mordant F L, Schlub T E, Gordon D L, Khoury D S, Subbarao K, Cromer D, Gordon T P, Chung A W, Davenport M P, Kent S J 2021 Nat. Commun. 12 1162
Google Scholar
[4] Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062
Google Scholar
[5] Price S D, Roithová J 2011 Phys. Chem. Chem. Phys. 13 18251
Google Scholar
[6] Matsika S, Spanner M, Kotur M, Weinacht T C 2013 J. Phys. Chem. A 117 12796
Google Scholar
[7] Ren B H, Ma P F, Zhang Y, Wei L, Han J, Xia Z H, Wang J R, Meng T M, Yu W D, Zou Y M, Yang C L, Wei B R 2022 Phys. Rev. A 106 012805
Google Scholar
[8] Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129
Google Scholar
[9] 张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文 2025 74 063401
Google Scholar
Zhang Z Q, Yan S C, Tao C Y, Yu X, Zhang S F, Ma X W 2025 Acta Phys. Sin. 74 063401
Google Scholar
[10] Das R, Bhojani A K, Madhusudhan P, Nimma V, Bhardwaj P, Singh D K, Kushawaha R K 2025 J. Phys. B: At. Mol. Opt. Phys. 58 045603
Google Scholar
[11] Wang E L, Shan X, Chen L, Pfeifer T, Chen X J, Ren X G, Dorn A 2020 J. Phys. Chem. A 124 2785
Google Scholar
[12] Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703
Google Scholar
[13] Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303
Google Scholar
[14] Wang B, Han J, Zhu X L, Wei L, Ren B H, Zhang Y, Yu W D, Yan S C, Ma X W, Zou Y M, Chen L, Wei B R 2021 Phys. Rev. A 103 042810
Google Scholar
[15] Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju K P, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001
Google Scholar
[16] Burger C, Kling N G, Siemering R, Alnaser A S, Bergues B, Azzeer A M, Moshammer R, de Vivie-Riedle R, Kübel M, Kling M F 2016 Faraday Discuss. 194 495
Google Scholar
[17] Hishikawa A, Matsuda A, Takahashi E J, Fushitani M 2008 J. Chem. Phys. 128 084302
Google Scholar
[18] Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215
Google Scholar
[19] Das R, Pandey D K, Soumyashree S, Madhusudhan P, Nimma V, Bhardwaj P, Muhammed S K M, Singh D K, Kushawaha R K 2022 Phys. Chem. Chem. Phys. 24 18306
Google Scholar
[20] Townsend D, Lahankar S A, Lee S K, Chambreau S D, Suits A G, Zhang X, Rheinecker J, Harding L B, Bowman J M 2004 Science 306 1158
Google Scholar
[21] Nakai K, Kato T, Kono H, Yamanouchi K 2013 J. Chem. Phys. 139 181103
Google Scholar
[22] Castrovilli M C, Trabattoni A, Bolognesi P, O’Keeffe P, Avaldi L, Nisoli M, Calegari F, Cireasa R 2018 J. Phys. Chem. Lett. 9 6012
Google Scholar
[23] Ma P, Wang C C, Li X K, Yu X T, Tian X, Hu W H, Yu J Q, Luo S Z, Ding D J 2017 J. Chem. Phys. 146 244305
Google Scholar
[24] Kokkonen E, Vapa M, Bučar K, Jänkälä K, Cao W, Žitnik M, Huttula M 2016 Phys. Rev. A 94 033409
Google Scholar
[25] Masuoka T, Koyano I 1991 J. Chem. Phys. 95 909
Google Scholar
[26] Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156
Google Scholar
[27] Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201
Google Scholar
[28] Walsh N, Sankari A, Laksman J, Andersson T, Oghbaie S, Afaneh F, Månsson E P, Gisselbrecht M, Sorensen S L 2015 Phys. Chem. Chem. Phys. 17 18944
Google Scholar
[29] Zhou J Q, Li Y T, Wang Y Y, Jia S K, Xue X R, Yang T, Zhang Z, Dorn A, Ren X G 2021 Phys. Rev. A 104 032807
Google Scholar
[30] Ma C, Xu S Y, Zhao D M, Guo D L, Yan S C, Feng W T, Zhu X L, Ma X W 2020 Phys. Rev. A 101 052701
Google Scholar
[31] Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708
Google Scholar
[32] Pearson R G 1975 Proc. Nat. Acad. Sci. USA 72 2104
Google Scholar
[33] Bersuker I B 2001 Chem. Rev. 101 1067
Google Scholar
[34] Bersuker I B 2021 Chem. Rev. 121 1463
Google Scholar
[35] Wörner H J, Merkt F 2009 Angew. Chem. Int. Ed. 48 6404
Google Scholar
[36] Jahn H A, Teller E 1937 Proc. R. Soc. London Ser. A 161 220
Google Scholar
[37] Matselyukh D, Svoboda V, Wörner H J 2025 Nat. Commun. 16 6540
Google Scholar
[38] Wang J G, Dong B W, Zhang M, Deng Y K, Jian X P, Li Z, Liu Y Q 2024 J. Am. Chem. Soc. 146 10443
Google Scholar
[39] Kugel' K I, Khomskiĭ D I 1982 Sov. Phys. Usp. 25 231
Google Scholar
[40] O’Brien M C, Chancey C C 1993 Am. J. Phys. 61 688
Google Scholar
[41] Zhou J Q, Wu L, Belina M, Skitnevskaya A D, Jia S K, Xue X R, Hao X T, Zeng Q R, Ma Q B, Zhao Y T, Li X K, He L H, Luo S Z, Zhang D D, Wang C C, Trofimov A B, Slavíček P, Ding D J, Ren X G 2025 Nat. Commun. 16 5838
Google Scholar
[42] Zhao X N, Zhang X Y, Liu H, Ma P, Li X K, Wang C C, Luo S Z, Ding D J 2025 Phys. Rev. A 111 053106
Google Scholar
[43] Zhou J Q, Belina M, Jia S K, Xue X R, Hao X T, Ren X G, Slavíček P 2022 J. Phys. Chem. Lett. 13 10603
Google Scholar
[44] Yuan H, Gao Y, Yang B, Gu S F, Lin H, Guo D L, Liu J L, Zhang S F, Ma X W, Xu S Y 2024 Phys. Rev. Lett. 133 193002
Google Scholar
[45] Duflot D, Robbe J M, Flament J P 1995 J. Chem. Phys. 103 10571
Google Scholar
[46] Matsubara T 2023 J. Phys. Chem. A 127 4801
Google Scholar
Catalog
Metrics
- Abstract views: 591
- PDF Downloads: 21
- Cited By: 0









DownLoad: