Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-precision calculation of dynamic electric dipole polarizability of $^{11}\mathrm{Be}^{2+}$ ion

WU Fangfei SHI Haotian QI Xiaoqiu ZUO Yani

Citation:

High-precision calculation of dynamic electric dipole polarizability of $^{11}\mathrm{Be}^{2+}$ ion

WU Fangfei, SHI Haotian, QI Xiaoqiu, ZUO Yani
cstr: 32037.14.aps.74.20250972
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • 11Be, as a typical one-neutron halo nucleus, is of unique significance in studying atomic and nuclear physics. The nucleus comprises a tightly bound 10Be core and a loosely bound valence neutron, forming an exotic nuclear configuration that is significantly different from traditional nuclear configuration in both magnetic and charge radii, thereby establishing a unique platform for investigating nuclear-electron interactions. In this study, we focus on the helium-like 11Be2+ ion and systematically calculate the energies and wavefunctions of the $n^{3}S_1$ and $n^{3}{\mathrm{P}}_{0,1,2}$ states up to principal quantum number $n=8$ by employing the relativistic configuration interaction (RCI) method combined with high-order B-spline basis functions. By directly incorporating the nuclear mass shift operator $H_{\mathrm{M}}$ into the Dirac-Coulomb-Breit (DCB) Hamiltonian, we comprehensively investigate the relativistic effects, Breit interactions, and nuclear mass corrections for 11Be2+. The results demonstrate that the energies of states with $n\leqslant 5$ converge to eight significant digits, showing excellent agreement with existing NRQED values, such as $-9.29871191(5)$ a.u. for the $^{3}{\mathrm{S}}_1$ state. The nuclear mass corrections are on the order of 10–4 a.u. and decrease with principal quantum number increasing.By using the high-precision wavefunctions, the electric dipole oscillator strengths for $k^3{\mathrm{S}}_1 \rightarrow m^3{\mathrm{P}}_{0,1,2}$ transitions ($k \leqslant 5$, $m \leqslant 8$) are determined, resulting in low-lying excited states ($m\leqslant4$) accurate to six significant digits, thereby providing reliable data for evaluating transition probabilities and radiative lifetimes. Furthermore, the dynamic electric dipole polarizabilities of the $n'^3{\mathrm{S}}_1$ ($n' \leqslant 5$) states are calculated using the sum-over-states method. The static polarizabilities exhibit a significant increase with principal quantum number increasing. For the $J=1$ state, the difference in polarizability between the magnetic sublevels $M_J=0$ and $M_J=\pm1$ is three times the tensor polarizability. In the calculation of dynamic polarizabilities, the precision reaches 10–6 in non-resonant regions, whereas achieving the same accuracy near resonance requires higher energy precision. These high-precision computational results provide crucial theoretical foundations and key input parameters for evaluating Stark shifts in high-precision measurements, simulating light-matter interactions, and investigating single-neutron halo nuclear structures.
      Corresponding author: QI Xiaoqiu, xqqi@zstu.edu.cn ; ZUO Yani, zuoyanizz@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204412, 12004124) and the Key Laboratory of State Administration for Market Regulation (Time Frequency and Gravity Primary Standard) (Grant No. AKYKF2501).
    [1]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [2]

    王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军 2021 70 043101Google Scholar

    Wang T, Jiang L, Wang X, Dong C Z, Wu Z W, Jiang J 2021 Acta Phys. Sin. 70 043101Google Scholar

    [3]

    Notermans R P M J W, Rengelink R J, van Leeuwen K A H, Vassen W 2014 Phys. Rev. A 90 052508Google Scholar

    [4]

    娄宗帅, 王跃飞, 康博溢, 李睿, 张文君, 魏远飞, 布明鹭, 蔡翊宇 2025 74 103202Google Scholar

    Lou Z S, Wang Y F, Kang B Y, Li R, Zhang W J, Wei Y F, Bu M L, Cai Y Y 2025 Acta Phys. Sin. 74 103202Google Scholar

    [5]

    Mitroy J, Zhang J Y, Bromley M W J 2008 Phys. Rev. A 77 032512Google Scholar

    [6]

    Babb J F, Klimchitskaya G L, Mostepanenko V M 2004 Phys. Rev. A 70 042901Google Scholar

    [7]

    Patkóš V C V, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 042809Google Scholar

    [8]

    Patkóš V C V, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 012803Google Scholar

    [9]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [10]

    Kato K, Skinner T D G, Hessels E A 2018 Phys. Rev. Lett. 121 143002Google Scholar

    [11]

    Guan H, Chen S, Qi X Q, Liang S, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102 030801(RGoogle Scholar

    [12]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [13]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [14]

    Qi X Q, Zhang P P, Yan Z C, Tang L Y, Chen A X, Shi T Y, Zhong Z X 2025 Phys. Rev. Res. 7 L022020Google Scholar

    [15]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93 032515Google Scholar

    [16]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88 052515Google Scholar

    [17]

    Wu F F, Deng K, Lu Z H 2022 Phys. Rev. A 106 042816Google Scholar

    [18]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199Google Scholar

    [19]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791Google Scholar

    [20]

    Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728Google Scholar

    [21]

    Yerokhin V A, Pachucki K 2010 Phys. Rev. A 81 022507Google Scholar

    [22]

    Qi X Q, Zhang P P, Yan Z C, Shi T Y, Drake G W F, Chen A X, Zhong Z X 2023 Phys. Rev. A 107 L010802Google Scholar

    [23]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Chen A X, Zhong Z X, Shi T Y 2024 Phys. Rev. A 110 012810Google Scholar

    [24]

    Bishop D M, Rérat M 1989 J. Chem. Phys. 91 5489Google Scholar

    [25]

    Johnson W R, Cheng K T 1996 Phys. Rev. A 53 1375Google Scholar

    [26]

    Zhu J M, Zhou B L, Yan Z C 1999 Chem. Phys. Lett. 313 184Google Scholar

    [27]

    Yan Z C, Zhu J M, Zhou B L 2000 Phys. Rev. A 62 034501Google Scholar

    [28]

    Zhu J M, Zhou B L, Yan Z C 2000 Mol. Phys. 98 529Google Scholar

    [29]

    Wu F F, Deng K, Lu Z H 2023 J. Quant. Spectrosc. Radiat. Transf. 295 108414Google Scholar

    [30]

    Wu F F, Qi X Q, Chen A X 2024 J. Chem. Phys. 161 134304Google Scholar

    [31]

    Takamine A, Wada M, Okada K, Nakamura T, Schury P, Sonoda T, Lioubimov V, Iimura H, Yamazaki Y, Kanai Y, Kojima T M, Yoshida A, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2009 Eur. Phys. J. A 42 369Google Scholar

    [32]

    Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 Rev. Mod. Phys. 93 025010Google Scholar

    [33]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 307Google Scholar

    [34]

    Wu F F, Shi T Y, Ni W T, Tang L Y 2023 Phys. Rev. A 108 L051101Google Scholar

    [35]

    Porsev S G, Kozlov M G, Safronova M S 2023 Phys. Rev. A 108 L051102Google Scholar

  • 图 1  11Be2+离子$2^3 {\mathrm{S}}_1$和$3^3 {\mathrm{S}}_1$态$|M_{J}|=1$磁子能级的动力学电偶极极化率, 垂直虚线表示共振位置. 橘黄色和蓝色数字分别表示$2^3 {\mathrm{S}}_1(|M_{J}|=1)$和$3^3 {\mathrm{S}}_1(|M_{J}|=1)$态的幻零波长, 玫红色数字表示使$2^3 {\mathrm{S}}_1(|M_{J}|=1)$和$3^3 {\mathrm{S}}_1 $$ (|M_{J}|=1)$态极化率相等的魔幻波长

    Figure 1.  Dynamic electric dipole polarizabilities of the 11Be2+ ion $2^3 {\mathrm{S}}_1(|M_{J}|=1)$ and $3^3 {\mathrm{S}}_1(|M_{J}|=1)$ states, with vertical dashed lines indicating the resonance positions. The orange and blue numbers represent the tune-out wavelengths for the $2^3 {\mathrm{S}}_1 |M_{J}|=1$ and $3^3 {\mathrm{S}}_1 |M_{J}|=1$ states, respectively, and the magenta numbers indicate the magic wavelengths at which the polarizabilities of the $2^3 {\mathrm{S}}_1(|M_{J}|=1)$ and $3^3 {\mathrm{S}}_1(|M_{J}|=1)$ states are equal.

    图 2  11Be2+离子$4^3 {\mathrm{S}}_1$和$5^3 {\mathrm{S}}_1$态$|M_{J}|=1$磁子能级的动力学电偶极极化率, 垂直虚线表示共振位置. 紫色和绿色数字分别表示$4^3 {\mathrm{S}}_1(|M_{J}|=1)$和$5^3 {\mathrm{S}}_1(|M_{J}|=1)$态的幻零波长, 玫红色数字表示使$4^3 {\mathrm{S}}_1(|M_{J}|=1)$和$5^3 {\mathrm{S}}_1(|M_{J}|= 1)$态极化率相等的魔幻波长

    Figure 2.  Dynamic electric dipole polarizabilities of the 11Be2+ ion $4^3 {\mathrm{S}}_1(|M_{J}|=1)$ and $5^3 {\mathrm{S}}_1(|M_{J}|=1)$ states, with vertical dashed lines indicating the resonance positions. The purple and green numbers represent the tunw-out wavelengths for the $4^3 {\mathrm{S}}_1(|M_{J}|=1)$ and $5^3 {\mathrm{S}}_1(|M_{J}|=1)$ states, respectively, and the magenta numbers indicate the magic wavelengths at which the polarizabilities of the $4^3{\mathrm{ S}}_1(|M_{J}|=1)$ and $5^3 {\mathrm{S}}_1(|M_{J}|=1)$ states are equal.

    表 1  11Be2+离子$ n ^3{\mathrm{S}}_1(n\leqslant 8) $态能量(a.u.)的收敛性检验, 以及Be2+离子$ n ^3{\mathrm{S}}_1~(6\leqslant n\leqslant 8) $态的能量(a.u.). 小括号内的数字是计算不确定度

    Table 1.  Convergence test of energy (in a.u.) for the $ n ^3{\mathrm{S}}_1~(n\leqslant 8) $ states of 11Be2+ ion, as well as the energy (in a.u.) for the $ n ^3{\mathrm{S}}_1(6\leqslant n\leqslant 8) $ states of Be2+ ion. The numbers in parentheses are computational uncertainties.

    (N, $ \ell_m $) $ 2 ^3\mathrm{S}_1 $ $ 3 ^3\mathrm{S}_1 $ $ 4 ^3\mathrm{S}_1 $ $ 5 ^3\mathrm{S}_1 $ $ 6 ^3\mathrm{S}_1 $ $ 7 ^3\mathrm{S}_1 $ $ 8 ^3\mathrm{S}_1 $
    (40, 8) –9.2987118781 –8.5483475380 –8.3017888508 –8.1909936393 –8.1318566822 –8.0966153793 –8.0739367761
    (40, 9) –9.2987119119 –8.5483475470 –8.3017888543 –8.1909936410 –8.1318566832 –8.0966153799 –8.0739367765
    (40, 10) –9.2987118673 –8.5483475442 –8.3017888537 –8.1909936408 –8.1318566831 –8.0966153798 –8.0739367764
    (45, 10) –9.298 711 9028 –8.5483475516 –8.3017888542 –8.1909936238 –8.1318565642 –8.0966147583 –8.0739335599
    (50, 10) –9.2987118649 –8.5483475498 –8.3017888539 –8.1909936224 –8.1318565546 –8.0966147052 –8.0739332679
    Extrap. –9.29871191(5) –8.54834755(2) –8.30178885(1) –8.19099362(3) –8.1318566(1) –8.0966147(4) –8.073933(4)
    –9.298711181[21]
    Be2+ –9.29917621(4)[29] –8.54877343(4)[29] –8.30220222(4)[29] –8.19140139(4)[29] –8.1322613(2) –8.0970178(6) –8.074334(5)
    DownLoad: CSV

    表 2  11Be2+离子$ n ^3{\mathrm{P}}_{0, 1, 2}\, (n\leqslant 8) $态和Be2+离子$ n ^3{\mathrm{P}}_{0, 1, 2} \, (6\leqslant n\leqslant 8) $态的能量(a.u.). 小括号内的数字是计算不确定度

    Table 2.  Energy (in a.u.) for the $ n ^3{\mathrm{P}}_{0, 1, 2}\, (n\leqslant 8) $ states of 11Be2+ ion and the $ n ^3{\mathrm{P}}_{0, 1, 2}\, (6\leqslant n\leqslant 8) $ states of Be2+ ion. The numbers in parentheses are computational uncertainties.

    n $ ^3{\mathrm{P}}_0 $(11Be2+) $ ^3{\mathrm{P}}_0 $(Be2+) $ ^3{\mathrm{P}}_1 $(11Be2+) $ ^3{\mathrm{P}}_1 $(Be2+) $ ^3{\mathrm{P}}_2 $(11Be2+) $ ^3{\mathrm{P}}_2 $(Be2+)
    2 –9.17627904(4) –9.176 700 64(4)[29] –9.17633162(4) –9.17675322(4)[29] –9.17626402(4) –9.17668561(4)[29]
    –9.176278322[21] –9.176330730[21] –9.176263355[21]
    3 –8.51591623(4) –8.51633141(4)[29] –8.51592914(4) –8.51634433(4)[29] –8.51590908(4) –8.51632431(4)[29]
    4 –8.28867151(4) –8.28908063(4)[29] –8.28867658(4) –8.28908570(4)[29] –8.28866814(4) –8.28907727(4)[29]
    5 –8.18442245(4) –8.18482810(4)[29] –8.18442495(4) –8.18483061(4)[29] –8.18442064(4) –8.18482630(4)[29]
    6 –8.12810385(8) –8.12850744(8) –8.12810527(8) –8.12850886(8) –8.12810278(8) –8.12850637(8)
    7 –8.09427236(8) –8.09467469(8) –8.09427324(8) –8.09467556(8) –8.0942717(1) –8.0946740(1)
    8 –8.0723741(4) –8.0727757(4) –8.0723745(4) –8.0727762(4) –8.072373(4) –8.0727752(4)
    DownLoad: CSV

    表 3  11Be2+离子$ n ^3{\mathrm{S}}_{1}\rightarrow m ^3{\mathrm{P}}_{0, 1, 2} $跃迁的振子强度(a.u.). 小括号中的数字是计算不确定度, 中括号中的数字表示10的幂次

    Table 3.  Oscillator strengths (in a.u.) for $ n ^3{\mathrm{S}}_{1}\rightarrow m ^3{\mathrm{P}}_{0, 1, 2} $ transitions of 11Be2+ ion. Numbers in parentheses are computational uncertainties. Numbers in square brackets represent the power of 10.

    $ 2 ^3{\mathrm{S}}_1 $ $ 3 ^3{\mathrm{S}}_1 $ $ 4 ^3{\mathrm{S}}_1 $ $ 5 ^3{\mathrm{S}}_1 $
    $ 2^3{\mathrm{P}}_0 $ 2.372207(2)[–2] 9.872733(2)[–3] 1.928282(2)[–3] 7.371365(4)[–4]
    $ 2^3{\mathrm{P}}_1 $ 7.113520(4)[–2] 2.959444(1)[–2] 5.780477(2)[–3] 2.209758(2)[–3]
    $ 2^3{\mathrm{P}}_2 $ 1.186353(6)[–1] 4.935354(6)[–2] 9.638898(6)[–3] 3.684637(4)[–3]
    $ 3^3{\mathrm{P}}_0 $ 2.8034387(2)[–2] 3.9595500(4)[–2] 2.1969329(1)[–2] 4.408759(2)[–3]
    $ 3^3{\mathrm{P}}_1 $ 8.412570(1)[–2] 1.1872683(2)[–1] 6.5866197(8)[–2] 1.3218516(4)[–2]
    $ 3^3{\mathrm{P}}_2 $ 1.4016114(8)[–1] 1.980174(5)[–1] 1.0983887(8)[–1] 2.204119(1)[–2]
    $ 4^3{\mathrm{P}}_0 $ 7.9394418(4)[–3] 2.9307965(4)[–2] 5.442867(2)[–2] 3.485147(2)[–2]
    $ 4^3{\mathrm{P}}_1 $ 2.3822715(1)[–2] 8.794741(2)[–2] 1.6320086(4)[–2] 1.0449598(8)[–1]
    $ 4^3{\mathrm{P}}_2 $ 3.969574(2)[–2] 1.465153(2)[–1] 2.721986(4)[–1] 1.742527(2)[–1]
    $ 5^3{\mathrm{P}}_0 $ 3.436979(4)[–3] 8.804208(4)[–3] 3.165094(4)[–2] 6.89132(2)[–2]
    $ 5^3{\mathrm{P}}_1 $ 1.031254(1)[–2] 2.641763(1)[–2] 9.49775(1)[–2] 2.066303(6)[–1]
    $ 5^3{\mathrm{P}}_2 $ 1.718454(2)[–2] 4.401593(4)[–2] 1.582203(2)[–1] 3.446360(4)[–1]
    $ 6^3{\mathrm{P}}_0 $ 1.822257(8)[–3] 3.98831(2)[–3] 9.67922(2)[–3] 3.44362(4)[–2]
    $ 6^3{\mathrm{P}}_1 $ 5.46755(4)[–3] 1.196685(8)[–2] 2.904307(4)[–2] 1.03336(2)[–1]
    $ 6^3{\mathrm{P}}_2 $ 9.11117(6)[–3] 1.99396(1)[–2] 4.838841(4)[–2] 1.72139(1)[–1]
    $ 7^3{\mathrm{P}}_0 $ 1.08963(8)[–3] 2.1925(2)[–3] 4.4708(2)[–3] 1.057500(8)[–2]
    $ 7^3{\mathrm{P}}_1 $ 3.2693(2)[–3] 6.5784(6)[–3] 1.34147(8)[–2] 3.17309(6)[–2]
    $ 7^3{\mathrm{P}}_2 $ 5.4481(6)[–3] 1.0961(1)[–2] 2.2351(1)[–2] 5.2866(2)[–2]
    $ 8^3{\mathrm{P}}_0 $ 7.067(8)[–4] 1.350(1)[–3] 2.503(4)[–3] 4.926(4)[–3]
    $ 8^3P_1 $ 2.1182(4)[–3] 4.051(4)[–3] 7.510(4)[–3] 1.479(2)[–3]
    $ 8^3{\mathrm{P}}_2 $ 3.530(2)[–3] 6.750(2)[–3] 1.252(2)[–2] 2.464(2)[–2]
    DownLoad: CSV

    表 4  11Be2+离子$ n ^3{\mathrm{S}}_1(n\leqslant 5) $态静态电偶极极化率(a.u.)的收敛性检验. 小括号中的数字是计算不确定度

    Table 4.  Convergence test of static dipole electric polarizability (in a.u.) for the $ n ^3{\mathrm{S}}_1(n\leqslant 5) $ states of 11Be2+ ion. The numbers in parentheses are computational uncertainties

    (N, $ \ell_m $) $ 2\, ^3 {\mathrm{S}}_1(M_{J}=0/\pm 1) $ $ 3\, ^3 {\mathrm{S}}_1(M_{J}=0/\pm 1) $ $ 4\, ^3 {\mathrm{S}}_1(M_{J}=0/\pm 1) $ $ 5\, ^3 {\mathrm{S}}_1(M_{J}=0/\pm 1) $
    (40, 8) 14.888529/14.891730 343.889786/343.954302 2868.6928/2869.2072 14424.502/14427.048
    (40, 9) 14.888533/14.891735 343.889940/343.954462 2868.6941/2869.2085 14424.508/14427.054
    (40, 10) 14.888538/14.891742 343.890034/343.954574 2868.6946/2869.2092 14424.510/14427.058
    (45, 10) 14.888561/14.891758 343.890263/343.954742 2868.6970/2869.2111 14424.544/14427.088
    (50, 10) 14.888528/14.891735 343.889933/343.954502 2868.6944/2869.2092 14424.531/14427.080
    Extrap. 14.88858(6)/14.89177(4) 343.8904(7)/343.9548(5) 2868.697(5)/2869.211(4) 14424.54(4)/14427.08(4)
    DownLoad: CSV

    表 5  11Be2+离子$ n ^3{\mathrm{S}}_{1} (\leqslant 5) $态的动力学电偶极极化率及其计算不确定度(a.u.), ω为外场频率, 原子单位

    Table 5.  Dynamic electric dipole polarizabilities and computational uncertainties (in a.u.) for $ n ^3{\mathrm{S}}_{1} (\leqslant 5) $ states of 11Be2+ ion, where ω is the frequency of external field, in a.u.

    ω/a.u. $ 2 ^3\mathrm{S}_1(M_{J}=0/\pm 1) $ $ 3 ^3\mathrm{S}_1(M_{J}=0/\pm 1) $ $ 4 ^3\mathrm{S}_1(M_{J}=0/\pm 1) $ $ 5 ^3\mathrm{S}_1(M_{J}=0/\pm 1) $
    0.02 15.27929(3)/15.28277(2) 551.7125(9)/551.9742(7) –2126.974(5)/–2125.537(4) –1666.090(2)/–1665.446(2)
    0.03 15.79888(3)/15.80274(3) 2348.47(3)/2355.50(2) –649.2535(8)/–648.9762(6) –638.422(2)/–638.155(2)
    0.04 16.59145(4)/16.59592(3) –645.258(3)/–644.484(2) –317.9701(4)/–317.8436(3) –284.578(3)/–284.410(3)
    0.045 17.11436(4)/17.11926(3) –361.0677(9)/–360.7746(7) –238.3984(3)/–238.3025(2) –171.451(4)/–171.301(4)
    0.05 17.74088(4)/17.74631(3) –240.8547(5)/–240.6914(4) –183.3957(2)/–183.3195(2) –60.173(6)/–60.025(7)
    0.055 18.49116(5)/18.49728(4) –175.3147(3)/–175.2190(3) –143.3993(2)/–143.3365(2) 102.35(2)/102.53(2)
    0.06 19.39221(5)/19.39919(4) –134.5050(2)/–134.4378(2) –113.0578(2)/–113.00454(9) 672.43(7)/672.93(7)
    0.065 20.48070(6)/20.48879(5) –106.9053(2)/–106.8553(2) –89.1419(1)/–89.09557(8) –1326.21(8)/–1325.85(8)
    0.07 21.80763(7)/21.81719(6) –87.1505(2)/–87.11157(9) –69.56520(9)/–69.52388(6) –490.156(5)/–490.103(5)
    0.075 23.44577(9)/23.45730(7) –72.41078(9)/–72.37938(7) –52.87530(8)/–52.83766(5) –338.839(2)/–338.785(2)
    0.08 25.5025(2)/25.51673(8) –61.05605(8)/–61.03007(6) –37.95614(6)/–37.92106(5) –278.694(3)/–278.627(3)
    0.085 28.1427(2)/28.1609(1) –52.08358(7)/–52.06161(5) –23.81351(7)/–23.77994(6) –257.546(6)/–257.452(6)
    0.09 31.6335(2)/31.6576(2) –44.84405(6)/–44.82516(4) –9.35342(8)/–9.32025(7) –277.90(2)/–277.68(2)
    0.095 36.4367(3)/36.4702(2) –38.89943(5)/–38.88295(4) 6.9806(1)/7.01487(9) –432.7(2)/–431.7(2)
    0.10 43.4261(4)/43.4760(3) –33.94404(5)/–33.92949(4) 28.0790(2)/28.1170(2) 441.99(6)/442.72(6)
    0.11 74.483(2)/74.6458(9) –26.18144(4)/–26.16973(3) 131.7548(7)/131.8358(8) 32.52(3)/32.53(3)
    0.12 361.19(4)/365.51(3) –20.39655(3)/–20.38682(2) –486.980(5)/–486.775(5) –146(1)/–146(1)
    0.13 –111.268(4)/–110.830(3) –15.91658(3)/–15.90826(2) –116.4122(2)/–116.4040(2) –8.5(2)/–8.4(2)
    0.14 –45.6790(6)/–45.5965(5) –12.32375(2)/–12.31647(2) –68.80539(6)/–68.79816(6)
    0.15 –27.7762(3)/–27.7422(2) –9.34226(2)/–9.33576(2) –46.6878(2)/–46.6794(2)
    0.16 –19.4618(2)/–19.4433(1) –6.77800(2)/–6.77207(2) –28.4859(4)/–28.4748(4)
    0.17 –14.68262(9)/–14.67079(7) –4.48302(2)/–4.47750(2) 27.568(5)/27.602(5)
    0.18 –11.59257(6)/–11.58420(5) –2.33146(2)/–2.32622(1) –76.562(2)/–76.550(2)
    0.19 –9.43904(5)/–9.43342(4) –0.19850(2)/–0.193392(9) –51.2307(7)/–51.2156(7)
    0.20 –7.85783(4)/–7.85328(3) 2.06578(2)/2.070910(9) –47.611(3)/–47.577(3)
    0.22 –5.70307(3)/–5.70005(2) 8.05211(2)/8.058053(9) 56.557(6)/56.635(6)
    0.24 –4.31412(2)/–4.31196(2) 22.40003(2)/22.41095(2) 2.70(5)/2.70(5)
    0.26 –3.35158(2)/–3.349930(9) –1580.80(4)/–1566.25(4) –5.1(6)/–5.0(6)
    0.28 –2.64914(1)/–2.647830(7) –26.249939(7)/–26.248577(8)
    0.30 –2.115953(8)/–2.114877(6) –12.800496(3)/–12.799903(3)
    0.32 –1.698284(7)/–1.697376(5) –7.278323(3)/–7.277525(3)
    0.34 –1.362367(6)/–1.361585(4) –2.571976(7)/–2.570642(7)
    0.36 –1.085927(5)/–1.085241(4) 22.4313(3)/22.4461(3)
    0.38 –0.853663(4)/–0.853051(3) –10.49399(3)/–10.49349(3)
    0.40 –0.654682(4)/–0.654128(3) –4.67869(3)/–4.67806(3)
    DownLoad: CSV
    Baidu
  • [1]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [2]

    王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军 2021 70 043101Google Scholar

    Wang T, Jiang L, Wang X, Dong C Z, Wu Z W, Jiang J 2021 Acta Phys. Sin. 70 043101Google Scholar

    [3]

    Notermans R P M J W, Rengelink R J, van Leeuwen K A H, Vassen W 2014 Phys. Rev. A 90 052508Google Scholar

    [4]

    娄宗帅, 王跃飞, 康博溢, 李睿, 张文君, 魏远飞, 布明鹭, 蔡翊宇 2025 74 103202Google Scholar

    Lou Z S, Wang Y F, Kang B Y, Li R, Zhang W J, Wei Y F, Bu M L, Cai Y Y 2025 Acta Phys. Sin. 74 103202Google Scholar

    [5]

    Mitroy J, Zhang J Y, Bromley M W J 2008 Phys. Rev. A 77 032512Google Scholar

    [6]

    Babb J F, Klimchitskaya G L, Mostepanenko V M 2004 Phys. Rev. A 70 042901Google Scholar

    [7]

    Patkóš V C V, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 042809Google Scholar

    [8]

    Patkóš V C V, Yerokhin V A, Pachucki K 2021 Phys. Rev. A 103 012803Google Scholar

    [9]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [10]

    Kato K, Skinner T D G, Hessels E A 2018 Phys. Rev. Lett. 121 143002Google Scholar

    [11]

    Guan H, Chen S, Qi X Q, Liang S, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102 030801(RGoogle Scholar

    [12]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [13]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [14]

    Qi X Q, Zhang P P, Yan Z C, Tang L Y, Chen A X, Shi T Y, Zhong Z X 2025 Phys. Rev. Res. 7 L022020Google Scholar

    [15]

    Puchalski M, Piszczatowski K, Komasa J, Jeziorski B, Szalewicz K 2016 Phys. Rev. A 93 032515Google Scholar

    [16]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88 052515Google Scholar

    [17]

    Wu F F, Deng K, Lu Z H 2022 Phys. Rev. A 106 042816Google Scholar

    [18]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199Google Scholar

    [19]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791Google Scholar

    [20]

    Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728Google Scholar

    [21]

    Yerokhin V A, Pachucki K 2010 Phys. Rev. A 81 022507Google Scholar

    [22]

    Qi X Q, Zhang P P, Yan Z C, Shi T Y, Drake G W F, Chen A X, Zhong Z X 2023 Phys. Rev. A 107 L010802Google Scholar

    [23]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Chen A X, Zhong Z X, Shi T Y 2024 Phys. Rev. A 110 012810Google Scholar

    [24]

    Bishop D M, Rérat M 1989 J. Chem. Phys. 91 5489Google Scholar

    [25]

    Johnson W R, Cheng K T 1996 Phys. Rev. A 53 1375Google Scholar

    [26]

    Zhu J M, Zhou B L, Yan Z C 1999 Chem. Phys. Lett. 313 184Google Scholar

    [27]

    Yan Z C, Zhu J M, Zhou B L 2000 Phys. Rev. A 62 034501Google Scholar

    [28]

    Zhu J M, Zhou B L, Yan Z C 2000 Mol. Phys. 98 529Google Scholar

    [29]

    Wu F F, Deng K, Lu Z H 2023 J. Quant. Spectrosc. Radiat. Transf. 295 108414Google Scholar

    [30]

    Wu F F, Qi X Q, Chen A X 2024 J. Chem. Phys. 161 134304Google Scholar

    [31]

    Takamine A, Wada M, Okada K, Nakamura T, Schury P, Sonoda T, Lioubimov V, Iimura H, Yamazaki Y, Kanai Y, Kojima T M, Yoshida A, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2009 Eur. Phys. J. A 42 369Google Scholar

    [32]

    Tiesinga E, Mohr P J, Newell D B, Taylor B N 2021 Rev. Mod. Phys. 93 025010Google Scholar

    [33]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 307Google Scholar

    [34]

    Wu F F, Shi T Y, Ni W T, Tang L Y 2023 Phys. Rev. A 108 L051101Google Scholar

    [35]

    Porsev S G, Kozlov M G, Safronova M S 2023 Phys. Rev. A 108 L051102Google Scholar

  • [1] ZHANG Yonghui, SHI Tingyun, TANG Liyan. Applications of B-spline method in precise calculation of structure of few-electron atoms. Acta Physica Sinica, 2025, 74(8): 083101. doi: 10.7498/aps.74.20241728
    [2] Wei Yuan-Fei, Tang Zhi-Ming, Li Cheng-Bin, Huang Xue-Ren. Theoretical calculation of “tune-out” wavelengths for clock states of Al+. Acta Physica Sinica, 2024, 73(10): 103103. doi: 10.7498/aps.73.20240177
    [3] Yang Shuai, Tang Ze-Bo, Yang Chi, Zha Wang-Mei. Impact parameter dependence of photon-photon interactions in relativistic heavy-ion collisions. Acta Physica Sinica, 2023, 72(20): 201201. doi: 10.7498/aps.72.20230948
    [4] Li Yao-Jun, Yue Dong-Ning, Deng Yan-Qing, Zhao Xu, Wei Wen-Qing, Ge Xu-Lei, Yuan Xiao-Hui, Liu Feng, Chen Li-Ming. Proton imaging of relativistic laser-produced near-critical-density plasma. Acta Physica Sinica, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [5] Yu Geng-Hua, Yan Hui, Gao Dang-Li, Zhao Peng-Yi, Liu Hong, Zhu Xiao-Ling, Yang Wei. Calculationof isotope shift of Mg+ ion by using the relativistic multi-configuration interaction method. Acta Physica Sinica, 2018, 67(1): 013101. doi: 10.7498/aps.67.20171817
    [6] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang. Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [7] Chen Ze-Zhang. Theoretical study on the polarizability properties of liquid crystal in the THz range. Acta Physica Sinica, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [8] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [9] Xu Sheng-Nan, Liu Tian-Yuan, Sun Mei-Jiao, Li Shuo, Fang Wen-Hui, Sun Cheng-Lin, Li Zuo-Wei. Solvent effects on the electron-vibration coupling constant of β-carotene. Acta Physica Sinica, 2014, 63(16): 167801. doi: 10.7498/aps.63.167801
    [10] Yang Jian-Hui, Fan Qiang, Zhang Jian-Ping. The study of dielectronic recombination (DR) rate coefficient for ground state of Ne-like isoelectronic sequence ions. Acta Physica Sinica, 2012, 61(19): 193101. doi: 10.7498/aps.61.193101
    [11] Guo Zhao, Lu Bin, Jiang Xue, Zhao Ji-Jun. Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations. Acta Physica Sinica, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [12] Zhu Xing-Bo, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Experimental investigation of Stark effect of ultra-cold 39D cesium Rydberg atoms. Acta Physica Sinica, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [13] Cheng Cheng, Zhang Xiao-Le, Qing Bo, Li Jia-Ming, Gao Xiang. Full-relativistic multi-configuration self-consistent calculation of atomic structures and physical properties——Construction of “quasi-complete basis sets” and configuration interaction calculations. Acta Physica Sinica, 2010, 59(7): 4547-4555. doi: 10.7498/aps.59.4547
    [14] Yao Jian-Ming, Yang Chong. Spin-dependent transport through a multi-electrodes controlled by an Aharonov-Bohm ring. Acta Physica Sinica, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [15] Liu Yu-Xiao, Zhao Zhen-Hua, Wang Yong-Qiang, Chen Yu-Hong. Variational calculations and relativistic corrections to the nonrelativistic ground energies of the helium atom and the helium-like ions. Acta Physica Sinica, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [16] Zhang Yun-Dong, Sun Xu-Tao, He Zhu-Song. Theoretical model of laser-induced dispersion optical filter. Acta Physica Sinica, 2005, 54(7): 3000-3004. doi: 10.7498/aps.54.3000
    [17] Ma Xiao-Guang, Sun Wei-Guo, Cheng Yan-Song. A new expression for photoionization cross sections and its application in high density system. Acta Physica Sinica, 2005, 54(3): 1149-1155. doi: 10.7498/aps.54.1149
    [18] Han Ding-An, Guo Hong, Sun Hui, Bai Yan-Feng. The frequency modulation effects of the probe field in three level Λ-system. Acta Physica Sinica, 2004, 53(6): 1793-1798. doi: 10.7498/aps.53.1793
    [19] Cai Li, Ma Xi-Kui, Wang Sen. Study of hyperchaotic behavior in quantum cellular neural networks. Acta Physica Sinica, 2003, 52(12): 3002-3006. doi: 10.7498/aps.52.3002
    [20] HAN LI-HONG, GOU BING-CONG, WANG FEI. RELATIVISTIC ENERGIES AND FINE STRUCTURES OF THE EXCITED STATES FOR BERYLLIUM-LIKE BⅡ. Acta Physica Sinica, 2001, 50(9): 1681-1684. doi: 10.7498/aps.50.1681
Metrics
  • Abstract views:  508
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  21 July 2025
  • Accepted Date:  25 August 2025
  • Available Online:  02 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map