Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controllable synthesis of two-dimensional ferroelectric α-In2Se3 by low-temperature chemical vapor deposition

WANG Chengyang LI Yuexin HE Yanyan LI Mei ZHONG Lun JIE Wenjing

Citation:

Controllable synthesis of two-dimensional ferroelectric α-In2Se3 by low-temperature chemical vapor deposition

WANG Chengyang, LI Yuexin, HE Yanyan, LI Mei, ZHONG Lun, JIE Wenjing
cstr: 32037.14.aps.74.20251070
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Two-dimensional ferroelectric α-In2Se3 possesses many fascinating physical properties. However, chemical-vapor-deposited ferroelectric α-In2Se3 typically requires high temperatures (>650 ℃). In this work, α-In2Se3 is synthesized at 400 to 460 ℃ by introducing a KCl/LiCl/NH4Cl ternary catalyst, resulting in a 200 ℃ reduction in growth temperature compared with ferroelectric α-In2Se3 synthesized by the traditional chemical vapor deposition (CVD) method. The surface morphology of the as-prepared material is controlled by temperature and gas flow rate. As the growth temperature increases from 400 to 460 ℃, the synthesized α-In2Se3 is changed from discrete hexagonal flakes to a continuous and uniform thin film, which is confirmed by the scanning electron microscope. Raman spectroscopy shows that the characteristic peaks of In2Se3 are located at 103, 180, and 195 cm–1, respectively, indicating that the CVD-grown In2Se3 is α-phase. Furthermore, energy dispersive spectrometer and X-ray photoelectron spectroscopy indicate that the elemental composition is close to the ideal stoichiometric ratio, confirming the successful synthesis of the α-In2Se3. Then, the as-prepared α-In2Se3 is transferred onto Si/SiO2 substrate for device fabrication. Atomic force microscope indicates that the film is uniform, with an approximate thickness of 63 nm. The fabricated two-terminal memristors exhibit analogous resistive switching behaviors. And such memristors are used to achieve synaptic functions of long-term potentiation/long-term depression. For artificial neural network simulations based on the synaptic memristors, the recognition accuracy for hand-written digit image exceeds 90%. This work provides a practical method for growing two-dimensional ferroelectric α-In2Se3 at low temperatures for applications in synaptic devices and neuromorphic computing.
      Corresponding author: JIE Wenjing, wenjing.jie@sicnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62474118, 52233014).
    [1]

    Wu J B, Chen H Y, Yang N, Cao J, Yan X D, Liu F X, Sun Q B, Ling X, Guo J, Wang H 2020 Nat. Electron. 3 466Google Scholar

    [2]

    Wang S Y, Liu L, Gan L R, Chen H W, Hou X, Ding Y, Ma S L, Zhang D W, Zhou P 2021 Nat. Commun. 12 53Google Scholar

    [3]

    Wang X W, Zhu C, Deng Y, Duan R H, Chen J Q, Zeng Q S, Zhou J D, Fu Q D, You L, Liu S, Edgar J H, Yu P, Liu Z 2021 Nat. Commun. 12 1109Google Scholar

    [4]

    Dai M J, Wang Z G, Wang F K, Qiu Y F, Zhang J, Xu C Y, Zhai T Y, Cao W W, Fu Y Q, Jia D C, Zhou Y, Hu P A 2019 Nano Lett. 19 5410Google Scholar

    [5]

    Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H L, Lai K J 2017 Nano Lett. 17 5508Google Scholar

    [6]

    Chang K, Liu J W, Lin H C, Wang N, Zhao K, Zhang A M, Jin F, Zhong Y, Hu X P, Duan W H, Zhang Q M, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [7]

    Li M D, He Y Y, Wang C Y, Io W F, Guo F, Jie W J, Hao J H 2025 Small 2412314Google Scholar

    [8]

    Si M W, Saha A K, Gao S J, Qiu G, Qin J K, Duan Y Q, Jian J, Niu C, Wang H Y, Wu W Z, Gupta S K, Ye P D 2019 Nat. Electron. 2 580Google Scholar

    [9]

    Popović S, Čelustka B, Bidjin D 1971 Physica Status Solidi (a) 6 301Google Scholar

    [10]

    Osamura K, Murakami Y, Tomiie Y 1966 J. Phys. Soc. Jpn. 21 1848Google Scholar

    [11]

    Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956Google Scholar

    [12]

    Cui C J, Hu W J, Yan X X, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [13]

    Han W, Zheng X D, Yang K, Tsang C S, Zheng F Y, Wong L W, Lai K H, Yang T F, Wei Q, Li M J, Io W F, Guo F, Cai Y, Wang N, Hao J H, Lau S P, Lee C S, Ly T H, Yang M, Zhao J 2023 Nat. Nanotechnol. 18 55Google Scholar

    [14]

    Liu L X, Dong J Y, Huang J Q, Nie A M, Zhai K, Xiang J Y, Wang B C, Wen F S, Mu C P, Zhao Z S, Gong Y J, Tian Y J, Liu Z Y 2019 Chem. Mater. 31 10143Google Scholar

    [15]

    Li J, Wang X T, Ma Y, Han W, Li K X, Li J T, Wu Y, Zhao Y H, Yan T, Liu X, Shi H L, Chen X Q, Zhang Y Z 2025 ACS Nano 19 13220Google Scholar

    [16]

    Jiang Y X, Ning X K, Liu R H, Song K P, Ali S, Deng H Y, Li Y Z, Huang B H, Qiu J H, Zhu X F, Fan Z, Li Q K, Qin C B, Xue F, Yang T, Li B, Liu G, Hu W J, Li L J, Zhang Z D 2025 Nat. Commun. 16 7364Google Scholar

    [17]

    Xu L, Wu Z H, Han Y T, Wang M Z, Li J, Chen C, Wang L, Yuan Y K, Shi L, Redwing J M, Zhang X T 2025 Nano Lett. 25 8423Google Scholar

    [18]

    He Q M, Tang Z Y, Dai M Z, Shan H L, Yang H, Zhang Y, Luo X 2023 Nano Lett. 23 3098Google Scholar

    [19]

    Zhou S Y, Liao L C, Chen J H, Yu Y Y, Lü Z Q, Yang M, Yao B W, Zhang S, Peng G, Huang Z Y, Liu Y Y, Qi X, Wang G 2023 ACS Appl. Mater. Interfaces 15 23613Google Scholar

    [20]

    Mukherjee S, Dutta D, Mohapatra P K, Dezanashvili L, Ismach A, Koren E 2020 ACS Nano 14 17543Google Scholar

    [21]

    Zhang Z, Shi L, Wang B, Qu J Y, Wang X L, Wang T, Jiang Q T, Xue W H, Xu X H 2025 Chin. Chem. Lett. 36 109687Google Scholar

    [22]

    He Q M, Jiang B, Ma J Y, Chen W J, Luo X, Zheng Y 2025 Small Methods 9 2401549Google Scholar

    [23]

    Zhou J D, Zeng Q S, Lü D H, Sun L F, Niu L, Fu W, Liu F C, Shen Z X, Jin C H, Liu Z 2015 Nano Lett. 15 6400Google Scholar

    [24]

    Feng W, Zheng W, Gao F, Chen X S, Liu G B, Hasan T, Cao W W, Hu P A 2016 Chem. Mater. 28 4278Google Scholar

    [25]

    Io W F, Yuan S, Pang S Y, Wong L W, Zhao J, Hao J 2020 Nano Res. 13 1897Google Scholar

    [26]

    Sangster J, Pelton A D 1987 J. Phys. Chem. Ref. Data 16 509Google Scholar

    [27]

    Li Z L, Zhou J Y, Wang Z P, Gu J H, Zhang Y W, Wei Y X 2012 Adv. Mater. Res. 567 41Google Scholar

    [28]

    Won Y S, Kim Y S, Kryliouk O, Anderson T 2008 Physica Status Solidi c 5 1633Google Scholar

    [29]

    Yang K M, Wang J P, Wu L, Yan Y F, Tang X, Gan W, Li L, Li Y, Han H, Li H 2023 Results Phys. 51 106643Google Scholar

    [30]

    Kim J H, Kim S H, Yu H Y 2024 Small 20 2405459Google Scholar

    [31]

    Wang D, Yin J, Li Y, Li H, Wang M, Guo F, Jie W, Song F, Hao J 2025 Aggregate 6 e70099Google Scholar

    [32]

    Zhong Y N, Wang T, Gao X, Xu J L, Wang S D 2018 Adv. Funct. Mater. 28 1800854Google Scholar

    [33]

    Guo F, Song M L, Wong M C, Ding R, Io W F, Pang S Y, Jie W J, Hao J H 2022 Adv. Funct. Mater. 32 2108014Google Scholar

  • 图 1  CVD 法制备二维α-In2Se3材料的示意图

    Figure 1.  Schematic diagram of the CVD synthesis of two-dimensional α-In2Se3 material.

    图 2  不同生长温度下制备得到的α-In2Se3的拉曼光谱图

    Figure 2.  Raman spectra of α-In2Se3 synthesized at different growth temperatures.

    图 3  (a)—(d) 在20 mL/min (标准状况)气体流量、不同生长温度下, 生长的In2Se3薄片光学显微图; (e)—(h) 在440 ℃、不同气体流量(标准状况)下, 生长的In2Se3薄片光学显微图

    Figure 3.  (a)–(d) Optical images of In2Se3 flakes grown at gas flow rate of 20 mL/min (standard condition) and different growth temperature; (e)–(h) optical images of In2Se3 flakes grown at 440 ℃ and different gas flow rate (standard condition).

    图 4  (a)—(d) 各个温度生长的In2Se3的SEM图; (e) 各元素百分比含量

    Figure 4.  (a)–(d) SEM images of In2Se3 grown at various temperatures; (e) percentage content of each element.

    图 5  (a) In 3d3/2和In 3d5/2的XPS能谱; (b) Se 3d3/2和Se 3d5/2的XPS能谱; (c) 合成α-In2Se3的XPS能谱; (d) α-In2Se3 AFM图像及对应的高度剖面图

    Figure 5.  (a) XPS spectra of In 3d3/2 and In 3d5/2; (b) XPS spectra of Se 3d3/2 and Se 3d5/2; (c) XPS spectrum of synthesized α-In2Se3; (d) AFM image of the α-In2Se3 and corresponding height profile.

    图 6  Au/α-In2Se3/Au忆阻器的10个循环周期的I-V特性曲线(插图为器件结构示意图)

    Figure 6.  I-V characteristic curves of the Au/α-In2Se3/Au memristor for 10 cycles (inset shows a schematic diagram of the device structure).

    图 7  20组重复的相同大小的电脉冲诱导的LTP/LTD行为

    Figure 7.  LTP/LTD behavior induced by 20 sets of repetitive identical-sized electrical pulses.

    图 8  (a) 3层神经网络ANN示意图; (b) 8×8像素的识别精度; (c) 28×28像素的识别精度

    Figure 8.  (a) Schematic structure of three-layer neural network ANN structure; (b) recognition accuracy of 8×8 pixels; (c) recognition accuracy of 28×28 pixels.

    表 1  不同条件合成α-In2Se3

    Table 1.  Synthesis of α-In2Se3 under different conditions.

    In源 Se源 催化剂 衬底 文献
    In2O3
    (650—750 ℃)
    Se粉(300 ℃) mica [17]
    In2O3
    (680—750 ℃)
    Se粉(250 ℃) mica [18]
    In2O3
    (700—900 ℃)
    Se粉 mica [19]
    In2O3
    (630 ℃)
    Se粉(250 ℃) mica [20]
    In2O3
    (850 ℃)
    Se粉(270 ℃) SiO2/Si [14]
    In2O3
    (550/650 ℃)
    Se粉(270 ℃) SiO2/Si [21]
    In2O3
    (670 ℃)
    Se粉(250 ℃) mica [22]
    In2Se3
    (850 ℃)
    SiO2/Si [23]
    In2O3
    (660 ℃)
    Se粉(350 ℃) mica [24]
    In2O3
    (660 ℃)
    Se粉(300 ℃) mica [25]
    InCl3
    (400—460 ℃)
    Se粉(300 ℃) KCl/NaCl/
    NH4Cl
    SiO2/Si 本工作
    DownLoad: CSV
    Baidu
  • [1]

    Wu J B, Chen H Y, Yang N, Cao J, Yan X D, Liu F X, Sun Q B, Ling X, Guo J, Wang H 2020 Nat. Electron. 3 466Google Scholar

    [2]

    Wang S Y, Liu L, Gan L R, Chen H W, Hou X, Ding Y, Ma S L, Zhang D W, Zhou P 2021 Nat. Commun. 12 53Google Scholar

    [3]

    Wang X W, Zhu C, Deng Y, Duan R H, Chen J Q, Zeng Q S, Zhou J D, Fu Q D, You L, Liu S, Edgar J H, Yu P, Liu Z 2021 Nat. Commun. 12 1109Google Scholar

    [4]

    Dai M J, Wang Z G, Wang F K, Qiu Y F, Zhang J, Xu C Y, Zhai T Y, Cao W W, Fu Y Q, Jia D C, Zhou Y, Hu P A 2019 Nano Lett. 19 5410Google Scholar

    [5]

    Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H L, Lai K J 2017 Nano Lett. 17 5508Google Scholar

    [6]

    Chang K, Liu J W, Lin H C, Wang N, Zhao K, Zhang A M, Jin F, Zhong Y, Hu X P, Duan W H, Zhang Q M, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [7]

    Li M D, He Y Y, Wang C Y, Io W F, Guo F, Jie W J, Hao J H 2025 Small 2412314Google Scholar

    [8]

    Si M W, Saha A K, Gao S J, Qiu G, Qin J K, Duan Y Q, Jian J, Niu C, Wang H Y, Wu W Z, Gupta S K, Ye P D 2019 Nat. Electron. 2 580Google Scholar

    [9]

    Popović S, Čelustka B, Bidjin D 1971 Physica Status Solidi (a) 6 301Google Scholar

    [10]

    Osamura K, Murakami Y, Tomiie Y 1966 J. Phys. Soc. Jpn. 21 1848Google Scholar

    [11]

    Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956Google Scholar

    [12]

    Cui C J, Hu W J, Yan X X, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [13]

    Han W, Zheng X D, Yang K, Tsang C S, Zheng F Y, Wong L W, Lai K H, Yang T F, Wei Q, Li M J, Io W F, Guo F, Cai Y, Wang N, Hao J H, Lau S P, Lee C S, Ly T H, Yang M, Zhao J 2023 Nat. Nanotechnol. 18 55Google Scholar

    [14]

    Liu L X, Dong J Y, Huang J Q, Nie A M, Zhai K, Xiang J Y, Wang B C, Wen F S, Mu C P, Zhao Z S, Gong Y J, Tian Y J, Liu Z Y 2019 Chem. Mater. 31 10143Google Scholar

    [15]

    Li J, Wang X T, Ma Y, Han W, Li K X, Li J T, Wu Y, Zhao Y H, Yan T, Liu X, Shi H L, Chen X Q, Zhang Y Z 2025 ACS Nano 19 13220Google Scholar

    [16]

    Jiang Y X, Ning X K, Liu R H, Song K P, Ali S, Deng H Y, Li Y Z, Huang B H, Qiu J H, Zhu X F, Fan Z, Li Q K, Qin C B, Xue F, Yang T, Li B, Liu G, Hu W J, Li L J, Zhang Z D 2025 Nat. Commun. 16 7364Google Scholar

    [17]

    Xu L, Wu Z H, Han Y T, Wang M Z, Li J, Chen C, Wang L, Yuan Y K, Shi L, Redwing J M, Zhang X T 2025 Nano Lett. 25 8423Google Scholar

    [18]

    He Q M, Tang Z Y, Dai M Z, Shan H L, Yang H, Zhang Y, Luo X 2023 Nano Lett. 23 3098Google Scholar

    [19]

    Zhou S Y, Liao L C, Chen J H, Yu Y Y, Lü Z Q, Yang M, Yao B W, Zhang S, Peng G, Huang Z Y, Liu Y Y, Qi X, Wang G 2023 ACS Appl. Mater. Interfaces 15 23613Google Scholar

    [20]

    Mukherjee S, Dutta D, Mohapatra P K, Dezanashvili L, Ismach A, Koren E 2020 ACS Nano 14 17543Google Scholar

    [21]

    Zhang Z, Shi L, Wang B, Qu J Y, Wang X L, Wang T, Jiang Q T, Xue W H, Xu X H 2025 Chin. Chem. Lett. 36 109687Google Scholar

    [22]

    He Q M, Jiang B, Ma J Y, Chen W J, Luo X, Zheng Y 2025 Small Methods 9 2401549Google Scholar

    [23]

    Zhou J D, Zeng Q S, Lü D H, Sun L F, Niu L, Fu W, Liu F C, Shen Z X, Jin C H, Liu Z 2015 Nano Lett. 15 6400Google Scholar

    [24]

    Feng W, Zheng W, Gao F, Chen X S, Liu G B, Hasan T, Cao W W, Hu P A 2016 Chem. Mater. 28 4278Google Scholar

    [25]

    Io W F, Yuan S, Pang S Y, Wong L W, Zhao J, Hao J 2020 Nano Res. 13 1897Google Scholar

    [26]

    Sangster J, Pelton A D 1987 J. Phys. Chem. Ref. Data 16 509Google Scholar

    [27]

    Li Z L, Zhou J Y, Wang Z P, Gu J H, Zhang Y W, Wei Y X 2012 Adv. Mater. Res. 567 41Google Scholar

    [28]

    Won Y S, Kim Y S, Kryliouk O, Anderson T 2008 Physica Status Solidi c 5 1633Google Scholar

    [29]

    Yang K M, Wang J P, Wu L, Yan Y F, Tang X, Gan W, Li L, Li Y, Han H, Li H 2023 Results Phys. 51 106643Google Scholar

    [30]

    Kim J H, Kim S H, Yu H Y 2024 Small 20 2405459Google Scholar

    [31]

    Wang D, Yin J, Li Y, Li H, Wang M, Guo F, Jie W, Song F, Hao J 2025 Aggregate 6 e70099Google Scholar

    [32]

    Zhong Y N, Wang T, Gao X, Xu J L, Wang S D 2018 Adv. Funct. Mater. 28 1800854Google Scholar

    [33]

    Guo F, Song M L, Wong M C, Ding R, Io W F, Pang S Y, Jie W J, Hao J H 2022 Adv. Funct. Mater. 32 2108014Google Scholar

  • [1] Liu Huai-Yuan, Xiao Jian-Fei, Lü Zhao-Zheng, Lü Li, Qu Fan-Ming. Growth of Bi2O2Se nanowires and their superconducting quantum interference devices. Acta Physica Sinica, 2024, 73(4): 047803. doi: 10.7498/aps.73.20231600
    [2] Wang Xuan, Du Jian-Rong, Li Zhi-Jun, Ma Ming-Lin, Li Chun-Lai. Coexisting discharge and synchronization of heterogeneous discrete neural network with crosstalk memristor synapses. Acta Physica Sinica, 2024, 73(11): 110503. doi: 10.7498/aps.73.20231972
    [3] Fei Xiang, Zhang Xiu-Mei, Fu Quan-Gui, Cai Zheng-Yang, Nan Hai-Yan, Gu Xiao-Feng, Xiao Shao-Qing. Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition. Acta Physica Sinica, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [4] Deng Wen, Wang Li-Sheng, Liu Jia-Ning, Yu Xue-Ling, Chen Feng-Xiang. Resistive switching behavior and mechanism of multilayer MoS2 memtransistor under control of back gate bias and light illumination. Acta Physica Sinica, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [5] Shi Chen-Yang, Min Guang-Zong, Liu Xiang-Yang. Research progress of protein-based memristor. Acta Physica Sinica, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [6] Feng Qiu-Ju, Shi Bo, Li Yun-Zheng, Wang De-Yu, Gao Chong, Dong Zeng-Jie, Xie Jin-Zhu, Liang Hong-Wei. Fabrication and properties of non-balance electric bridge gas sensor based on a single Sb doped ZnO microwire. Acta Physica Sinica, 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [7] Li Dan-Yang, Han Xu, Xu Guang-Yuan, Liu Xiao, Zhao Xiao-Jun, Li Geng-Wei, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie. Bi2O2Se photoconductive detector with low power consumption and high sensitivity. Acta Physica Sinica, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [8] Shao Nan,  Zhang Sheng-Bing,  Shao Shu-Yuan. Mathematical model of memristor with sensory memory. Acta Physica Sinica, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [9] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Analysis of memristor model with learning-experience behavior. Acta Physica Sinica, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [10] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [11] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [12] Liu Yi-Chun, Lin Ya, Wang Zhong-Qiang, Xu Hai-Yang. Oxide-based memristive neuromorphic synaptic devices. Acta Physica Sinica, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [13] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [14] Yu Zhi-Qiang, Liu Min-Li, Lang Jian-Xun, Qian Kai, Zhang Chang-Hua. Resistive switching characteristics and resistive switching mechanism of Au/TiO2/FTO memristor. Acta Physica Sinica, 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [15] Wang Bin, Feng Ya-Hui, Wang Qiu-Shi, Zhang Wei, Zhang Li-Na, Ma Jin-Wen, Zhang Hao-Ran, Yu Guang-Hui, Wang Gui-Qiang. Hydrogen etching of chemical vapor deposition-grown graphene domains. Acta Physica Sinica, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [16] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Modification of memristor model with synaptic characteristics and mechanism analysis of the model's learning-experience behavior. Acta Physica Sinica, 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [17] Meng Fan-Yi, Duan Shu-Kai, Wang Li-Dan, Hu Xiao-Fang, Dong Zhe-Kang. An improved WOx memristor model with synapse characteristic analysis. Acta Physica Sinica, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [18] Wang Lang, Feng Wei, Yang Lian-Qiao, Zhang Jian-Hua. The pre-treatment of copper for graphene synthesis. Acta Physica Sinica, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [19] Liu Dong-Qing, Cheng Hai-Feng, Zhu Xuan, Wang Nan-Nan, Zhang Chao-Yang. Research progress of memristors and memristive mechanism. Acta Physica Sinica, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [20] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
Metrics
  • Abstract views:  554
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2025
  • Accepted Date:  12 September 2025
  • Available Online:  30 September 2025
  • Published Online:  20 November 2025
  • /

    返回文章
    返回
    Baidu
    map