Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal transport regulation at GaN/graphene/diamond heterojunction interfaces

LIU Dongjing WANG Pengbo HU Zhiliang LU Jiaqi XIAO Yu HUANG Jiaqiang

Citation:

Thermal transport regulation at GaN/graphene/diamond heterojunction interfaces

LIU Dongjing, WANG Pengbo, HU Zhiliang, LU Jiaqi, XIAO Yu, HUANG Jiaqiang
cstr: 32037.14.aps.74.20250895
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to ascertain the heat dissipation performance of high-power gallium nitride devices, the thermal transport characteristics of GaN/graphene/diamond heterostructures are investigated at heterogeneous interfaces through molecular dynamics simulations. This study focuses on phonon transport mechanisms and regulatory strategies in the interfacial regions. The key findings are summarized below.Comparative analysis of two contact configurations reveals that the Ga-C structure exhibits an interfacial thermal conductance three times higher than that of the N-C structure, which is attributed to its larger phonon cutoff frequency and enhanced interfacial phonon coupling as evidenced by phonon spectral analysis. The intrinsic heterostructure demonstrates no thermal rectification characteristics without interface engineering. The analysis of hydrogenation effects shows that although hydrogenation generally hinders interfacial heat transfer, the thermal conductance increases paradoxically with the increase of hydrogenation ratio. This counterintuitive phenomenon arises from hydrogen-induced lattice disorder/hybridization scattering causing phonon localization (particularly severe in GaN-side hydrogenation), while generating new phonon coupling channels. The elemental doping investigations show that nitrogen and boron doping leads to an initial increase and subsequent decrease in interfacial thermal conductance, while silicon doping produces monotonic enhancement. Overlap factor analysis indicates that N and B doping first strengthens then weakens interfacial phonon coupling, whereas Si doping significantly improves coupling through synergistic effects of strong interfacial interactions and phonon focusing. Comparative evaluation of two Si doping potential functions shows that the difference in thermal conductance results is negligible. The studies on doping morphology show that although linear doping configurations can cause systematic changes in graphene phonon spectra, their influence on interfacial thermal conductance is minimal.These findings offer critical theoretical insights into thermal management optimization of GaN-based devices and provide fundamental guidance for overcoming thermal dissipation bottlenecks in high-power electronic systems.
      Corresponding author: HUANG Jiaqiang, huangjiaqiang201@163.com
    • Funds: Project supported by the 2024 Project on Enhancement of Basic Research Ability for Young and Middle-aged Teachers in Guangxi Universities, China (Grant No. 2024KY0203), the Nanning Scientific Research and Technology Development Plan Major Science and Technology Project, China (Grant No. 20241026), the Guangxi Key Research and Development Program, China (Grant No. Gui Ke AB25069315), the Guilin University of Electronic Technology’s Graduate Education Innovation Program, China (Grant No. 2024YCXS016), and the 2023 Guangxi Zhuang Autonomous Region Project for Research and Practice on New Engineering Disciplines, China (Grant No. XGK202309).
    [1]

    Sajjad Hossain Rafin S M, Ahmed R, Haque M A, Hossain M K, Haque M A, Mohammed O A 2023 Micromachines-Basel 14 2045Google Scholar

    [2]

    刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛 2024 73 150202Google Scholar

    Liu D J, Hu Z L, Zhou F, Wang P B, Wang Z D, Li T 2024 Acta Phys. Sin. 73 150202Google Scholar

    [3]

    Zha J W, Wang F, Wan B Q 2025 Prog. Mater. Sci. 148 101362Google Scholar

    [4]

    Giri A, Walton S G, Tomko J, Bhatt N, Johnson M J, Boris D R, Lu G, Caldwell J D, Prezhdo O V, Hopkins P E 2023 ACS Nano 17 14253Google Scholar

    [5]

    Liu D, Wang S, Zhu J, Li H, Zhu H 2022 Phys. Lett. A 426 127895Google Scholar

    [6]

    Lee W, Kihm K D, Kim H G, Lee W, Cheon S, Yeom S, Lim G, Pyun K R, Ko S H, Shin S 2018 Carbon 138 98Google Scholar

    [7]

    Chegel R 2023 Diamond Relat. Mater. 137 110154Google Scholar

    [8]

    Song J, Xu Z, He X 2020 Int. J. Heat Mass Transfer 157 119954Google Scholar

    [9]

    Liu F, Zou R, Hu N, Ning H, Yan C, Liu Y, Wu L, Mo F, Fu S 2019 Nanoscale 11 4067Google Scholar

    [10]

    Yang H, Gao S, Pan Y, Yang P 2024 Int. Commun. Heat Mass Transfer 155 107521Google Scholar

    [11]

    Dong S, Yang B, Xin Q, Lan X, Wang X, Xin G 2022 Phys. Chem. Chem. Phys. 24 12837Google Scholar

    [12]

    Yang Y, Ma J, Yang J, Zhang Y 2022 ACS Appl. Mater. Interfaces 14 45742Google Scholar

    [13]

    Chen G F, Bao W L, Chen J, Wang Z L 2022 Carbon 190 170Google Scholar

    [14]

    Wang J, Shen Y, Yang P 2023 Compos. Commun. 40 101616Google Scholar

    [15]

    Farzadian O, Yousefi F, Shafiee M, Khoeini F, Spitas C, Kostas K V 2024 J. Mol. Graph. Model. 129 108763Google Scholar

    [16]

    Yang B, Li D, Qi L, Li T, Yang P 2019 Phys. Lett. A 383 1306Google Scholar

    [17]

    Oi N, Okubo S, Tsuyuzaki I, Hiraiwa A, Kawarada H 2024 IEEE Electron Device Lett. 45 1554Google Scholar

    [18]

    Wang Y, Wang S, Zhang Y, Cheng Z, Yang D, Wang Y, Wang T, Cheng L, Wu Y, Hao Y 2024 Nanoscale 16 15170Google Scholar

    [19]

    Yang B, Wang J, Yang Z, Xin Z, Zhang N, Zheng H, Wu X 2023 Mater. Today Phys. 30 100948Google Scholar

    [20]

    朱洪涛, 黎广荣, 方诚, 周义朋, 方志杰, 赵凯 2023 岩石矿物学杂志 42 673Google Scholar

    Zhu H T, Li G R, Fang C, Zhou Y P, Fang Z J, Zhao K 2023 ACTA Petrol. Mineral. 42 673Google Scholar

    [21]

    Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989Google Scholar

    [22]

    Islam M S, Mia I, Ahammed S, Stampfl C, Park J 2020 Sci. Rep. 10 22050Google Scholar

    [23]

    Liang Q, Wei Y 2014 Phys. B: Condens. Matter 437 36Google Scholar

    [24]

    Erhart P, Albe K 2005 Phys. Rev. B 71 035211Google Scholar

    [25]

    杨兵 2021 博士学位论文 (镇江: 江苏大学)

    Yang B 2021 Ph. D. Dissertation (ZhenJiang: Jiangsu University

    [26]

    刘东静, 周福, 陈帅阳, 胡志亮 2023 72 157901Google Scholar

    Liu D J, Zhou F, Chen S Y, Hu Z L, 2023 Acta Phys. Sin. 72 157901Google Scholar

    [27]

    刘东静, 王韶铭, 杨平 2021 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [28]

    邵常焜, 汤勇, 陈恭, 余树东, 颜才满, 丁鑫锐, 袁伟, 张仕伟 2024 机械工程学报 60 271Google Scholar

    Shao C K, Tang Y, Chen G, Yu S D, Yan C M, Ding X R, Yuan W, Zhang S W 2024 J. Mech. Eng. 60 271Google Scholar

    [29]

    Ding H B, He J R, Ding L M, He T 2024 DeCarbon 4 100048Google Scholar

    [30]

    Zhao H, Yang X, Wang C, Lu R, Zhang T, Chen H, Zheng X 2023 Mater. Today Phys. 30 100941Google Scholar

    [31]

    Yang Y, Ma J, Pei Q X, Yang J, Zhang Y 2023 Int. J. Heat Mass Transfer 216 124558Google Scholar

    [32]

    Das P, Paul P, Hassan M, Morshed A M, Paul T C 2025 Comput. Mater. Sci 246 113359Google Scholar

    [33]

    Kochaev A, Maslov M, Katin K, Efimov V, Efimova I 2022 Mater. Today Nano 20 100247Google Scholar

    [34]

    佟赞, 杨银利, 徐晶, 刘伟, 陈亮 2023 72 068201Google Scholar

    Tong Z, Yang Y L, Xu J, Liu W, Chen L 2023 Acta Phys. Sin. 72 068201Google Scholar

    [35]

    向鑫, 刘浪, 把静文 2023 原子与分子 40 032002Google Scholar

    Xiang X, Liu L, Ba J W 2023 J. Atom. Mol. Phys. 40 032002Google Scholar

    [36]

    Yang B, Li D, Yang H, Wang J, Yang P 2020 Int. Commun. Heat Mass Transfer 117 104735Google Scholar

    [37]

    Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graphics Modell 62 74Google Scholar

    [38]

    Weng Y K, Yousefzadi Nobakht A, Shin S, Kihm K D, Aaron D S 2021 Int. J. Heat Mass Transfer 169 120979Google Scholar

    [39]

    Majeti V K, Roy A, Gupta K K, Dey S 2020 IOP Conf. Ser.: Mater. Sci. Eng. 2020 012188Google Scholar

    [40]

    Habibur Rahman M, Mitra S, Motalab M, Bose P 2020 RSC Adv. 10 31318Google Scholar

    [41]

    Rajasekaran G, Kumar R, Parashar A 2016 Mater. Res. Express 3 035011Google Scholar

    [42]

    Zhang X, Zhang J, Yang M 2020 Solid State Commun. 309 113845Google Scholar

  • 图 1  氮化镓/石墨烯/金刚石异质结构模型

    Figure 1.  Heterostructure model of gallium nitride/graphene/diamond.

    图 2  (a) 热源、热汇能量累计; (b) 沿热流方向的温度分布

    Figure 2.  (a) Accumulation of energy from heat source and heat sink; (b) temperature distribution along the direction of heat flow.

    图 3  (a) Ga-石墨烯接触方式结构模型; (b) N-石墨烯接触方式结构模型

    Figure 3.  Interface model of (a) Ga-graphene and (b) N-graphene contact configurations.

    图 4  Ga-石墨烯和N-石墨烯接触方式下的界面热导对比图

    Figure 4.  Comparison plot of interfacial thermal conductance for Ga-graphene and N-graphene contact configurations.

    图 5  Ga-石墨烯和N-石墨烯接触方式下的界面PDOS对比图

    Figure 5.  Comparison plot of interfacial PDOS for Ga-graphene and N-graphene contact configurations.

    图 6  两种热流方向下的界面热导对比图

    Figure 6.  Comparison plot of interfacial thermal conductance for two heat flow directions.

    图 7  双层石墨烯结构在不同热流方向下的界面热导对比图

    Figure 7.  Comparison plot of interfacial thermal conductance in bilayer graphene structure under different heat flow directions.

    图 8  (a) 单侧氢化俯视图; (b) 双侧氢化侧视图

    Figure 8.  (a) Top view of single-side hydrogenation; (b) Side view of double-side hydrogenation.

    图 9  三种氢化结构的界面热导变化图

    Figure 9.  Plot of interfacial thermal conductance variation for three hydrogenated structures.

    图 10  (a) 双侧氢化结构中的石墨烯PDOS变化图; (b), (c), (d), (e)和(f) 不同氢化率对应的界面PDOS变化图

    Figure 10.  (a) Plot of graphene PDOS variation in the double-side hydrogenated structure; (b), (c), (d), (e), and (f) plots of interfacial PDOS variation corresponding to different hydrogenation ratios

    图 11  氢化对PPR的影响

    Figure 11.  Effect of Hydrogenation on PPR

    图 12  引入不同掺杂元素后的界面热导变化图

    Figure 12.  Effects of three dopant elements on interfacial thermal conductance.

    图 13  氮和硼掺杂对重叠因子的影响 (a) 氮掺杂后的重叠因子; (b) 硼掺杂后的重叠因子

    Figure 13.  Effects of nitrogen and boron doping on overlap factor: (a) Overlap factor after nitrogen doping; (b) overlap factor after boron doping.

    图 14  硅掺杂对PDOS的影响 (a) 石墨烯PDOS; (b) 重叠因子

    Figure 14.  Effect of silicon doping on PDOS; (a) Graphene PDOS; (b) overlap factor.

    图 15  氮和硼掺杂对PPR的影响 (a) 硼掺杂后的PPR; (b) 氮掺杂后的PPR; (c) 不同硼掺杂率对应的PPR; (d) 不同氮掺杂率对应的PPR

    Figure 15.  Effects of nitrogen and boron doping on PPR: (a) PPR after boron doping; (b) PPR after nitrogen doping; (c) PPR corresponding to different boron doping ratios; (d) PPR corresponding to different nitrogen doping ratios.

    图 16  两种势函数在随机掺杂方式下的界面热导对比图

    Figure 16.  Comparison plot of interfacial thermal conductance for two potential functions under random doping configurations.

    图 17  两种势函数在规则掺杂方式下的界面热导对比图

    Figure 17.  Comparison plot of interfacial thermal conductance for two potential functions under regular doping configurations.

    图 18  (a), (b), (c) 单势函数下的氮化镓、石墨烯和金刚石的PDOS变化图; (d), (e), (f) 双势函数下的氮化镓、石墨烯和金刚石的PDOS变化图

    Figure 18.  (a), (b), (c) Plots of PDOS variation for gallium nitride, graphene, and diamond under the single potential function; (d), (e), (f) plots of PDOS variation for gallium nitride, graphene, and diamond under the double potential functions.

    图 19  两种规则掺杂形貌 (a) 线性Si掺杂; (b) 圆形Si掺杂

    Figure 19.  Two regular doping morphologies: (a) Linear Si doping; (b) circular Si doping.

    图 20  两种掺杂形貌下的界面热导对比图

    Figure 20.  Comparison plot of interfacial thermal conductance under two doping morphologies.

    图 21  (a), (b), (c)圆形掺杂下的氮化镓、石墨烯和金刚石的PDOS变化图; (d), (e), (f)线性掺杂下的氮化镓、石墨烯和金刚石的PDOS变化图

    Figure 21.  (a), (b), (c) Plots of PDOS variation for gallium nitride, graphene, and diamond under circular doping; (d), (e), (f) plots of PDOS variation for gallium nitride, graphene, and diamond under linear doping.

    表 1  晶格参数

    Table 1.  Lattice parameters.

    方向 氮化镓 石墨烯 金刚石
    x 3.21629 2.46000 3.56679
    y 5.57078 4.26084 3.56679
    z 5.23966 3.56679
    DownLoad: CSV

    表 2  Lennard-Jones势函数参数

    Table 2.  Lennard-Jones parameters.

    原子1 原子2 $\varepsilon $/eV $ \sigma$/Å
    C C 0.00361 3.671
    C Ga 0.00905 3.668
    C N 0.00369 3.346
    DownLoad: CSV

    表 3  无热整流效应异质结构的调研结果表

    Table 3.  Investigation results of heterostructures without thermal rectification effect.

    异质结构 一侧界面热导
    /(GW·K–1·m–2)
    另一侧界面热导
    /(GW·K–1·m–2)
    热整流比
    Sn/h-BN[32] 1.43×10–2 1.39×10–2 2.86%
    Gra/h-BN[31] 2.35×10–1 2.51×10–1 6.74%
    Gra/SiC[22] 3.77×10–3 3.69×10–3 2.21%
    Gra/ZnO[14] 8.75×10–2 8.76×10–2 0.15%
    DownLoad: CSV
    Baidu
  • [1]

    Sajjad Hossain Rafin S M, Ahmed R, Haque M A, Hossain M K, Haque M A, Mohammed O A 2023 Micromachines-Basel 14 2045Google Scholar

    [2]

    刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛 2024 73 150202Google Scholar

    Liu D J, Hu Z L, Zhou F, Wang P B, Wang Z D, Li T 2024 Acta Phys. Sin. 73 150202Google Scholar

    [3]

    Zha J W, Wang F, Wan B Q 2025 Prog. Mater. Sci. 148 101362Google Scholar

    [4]

    Giri A, Walton S G, Tomko J, Bhatt N, Johnson M J, Boris D R, Lu G, Caldwell J D, Prezhdo O V, Hopkins P E 2023 ACS Nano 17 14253Google Scholar

    [5]

    Liu D, Wang S, Zhu J, Li H, Zhu H 2022 Phys. Lett. A 426 127895Google Scholar

    [6]

    Lee W, Kihm K D, Kim H G, Lee W, Cheon S, Yeom S, Lim G, Pyun K R, Ko S H, Shin S 2018 Carbon 138 98Google Scholar

    [7]

    Chegel R 2023 Diamond Relat. Mater. 137 110154Google Scholar

    [8]

    Song J, Xu Z, He X 2020 Int. J. Heat Mass Transfer 157 119954Google Scholar

    [9]

    Liu F, Zou R, Hu N, Ning H, Yan C, Liu Y, Wu L, Mo F, Fu S 2019 Nanoscale 11 4067Google Scholar

    [10]

    Yang H, Gao S, Pan Y, Yang P 2024 Int. Commun. Heat Mass Transfer 155 107521Google Scholar

    [11]

    Dong S, Yang B, Xin Q, Lan X, Wang X, Xin G 2022 Phys. Chem. Chem. Phys. 24 12837Google Scholar

    [12]

    Yang Y, Ma J, Yang J, Zhang Y 2022 ACS Appl. Mater. Interfaces 14 45742Google Scholar

    [13]

    Chen G F, Bao W L, Chen J, Wang Z L 2022 Carbon 190 170Google Scholar

    [14]

    Wang J, Shen Y, Yang P 2023 Compos. Commun. 40 101616Google Scholar

    [15]

    Farzadian O, Yousefi F, Shafiee M, Khoeini F, Spitas C, Kostas K V 2024 J. Mol. Graph. Model. 129 108763Google Scholar

    [16]

    Yang B, Li D, Qi L, Li T, Yang P 2019 Phys. Lett. A 383 1306Google Scholar

    [17]

    Oi N, Okubo S, Tsuyuzaki I, Hiraiwa A, Kawarada H 2024 IEEE Electron Device Lett. 45 1554Google Scholar

    [18]

    Wang Y, Wang S, Zhang Y, Cheng Z, Yang D, Wang Y, Wang T, Cheng L, Wu Y, Hao Y 2024 Nanoscale 16 15170Google Scholar

    [19]

    Yang B, Wang J, Yang Z, Xin Z, Zhang N, Zheng H, Wu X 2023 Mater. Today Phys. 30 100948Google Scholar

    [20]

    朱洪涛, 黎广荣, 方诚, 周义朋, 方志杰, 赵凯 2023 岩石矿物学杂志 42 673Google Scholar

    Zhu H T, Li G R, Fang C, Zhou Y P, Fang Z J, Zhao K 2023 ACTA Petrol. Mineral. 42 673Google Scholar

    [21]

    Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989Google Scholar

    [22]

    Islam M S, Mia I, Ahammed S, Stampfl C, Park J 2020 Sci. Rep. 10 22050Google Scholar

    [23]

    Liang Q, Wei Y 2014 Phys. B: Condens. Matter 437 36Google Scholar

    [24]

    Erhart P, Albe K 2005 Phys. Rev. B 71 035211Google Scholar

    [25]

    杨兵 2021 博士学位论文 (镇江: 江苏大学)

    Yang B 2021 Ph. D. Dissertation (ZhenJiang: Jiangsu University

    [26]

    刘东静, 周福, 陈帅阳, 胡志亮 2023 72 157901Google Scholar

    Liu D J, Zhou F, Chen S Y, Hu Z L, 2023 Acta Phys. Sin. 72 157901Google Scholar

    [27]

    刘东静, 王韶铭, 杨平 2021 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [28]

    邵常焜, 汤勇, 陈恭, 余树东, 颜才满, 丁鑫锐, 袁伟, 张仕伟 2024 机械工程学报 60 271Google Scholar

    Shao C K, Tang Y, Chen G, Yu S D, Yan C M, Ding X R, Yuan W, Zhang S W 2024 J. Mech. Eng. 60 271Google Scholar

    [29]

    Ding H B, He J R, Ding L M, He T 2024 DeCarbon 4 100048Google Scholar

    [30]

    Zhao H, Yang X, Wang C, Lu R, Zhang T, Chen H, Zheng X 2023 Mater. Today Phys. 30 100941Google Scholar

    [31]

    Yang Y, Ma J, Pei Q X, Yang J, Zhang Y 2023 Int. J. Heat Mass Transfer 216 124558Google Scholar

    [32]

    Das P, Paul P, Hassan M, Morshed A M, Paul T C 2025 Comput. Mater. Sci 246 113359Google Scholar

    [33]

    Kochaev A, Maslov M, Katin K, Efimov V, Efimova I 2022 Mater. Today Nano 20 100247Google Scholar

    [34]

    佟赞, 杨银利, 徐晶, 刘伟, 陈亮 2023 72 068201Google Scholar

    Tong Z, Yang Y L, Xu J, Liu W, Chen L 2023 Acta Phys. Sin. 72 068201Google Scholar

    [35]

    向鑫, 刘浪, 把静文 2023 原子与分子 40 032002Google Scholar

    Xiang X, Liu L, Ba J W 2023 J. Atom. Mol. Phys. 40 032002Google Scholar

    [36]

    Yang B, Li D, Yang H, Wang J, Yang P 2020 Int. Commun. Heat Mass Transfer 117 104735Google Scholar

    [37]

    Goharshadi E K, Mahdizadeh S J 2015 J. Mol. Graphics Modell 62 74Google Scholar

    [38]

    Weng Y K, Yousefzadi Nobakht A, Shin S, Kihm K D, Aaron D S 2021 Int. J. Heat Mass Transfer 169 120979Google Scholar

    [39]

    Majeti V K, Roy A, Gupta K K, Dey S 2020 IOP Conf. Ser.: Mater. Sci. Eng. 2020 012188Google Scholar

    [40]

    Habibur Rahman M, Mitra S, Motalab M, Bose P 2020 RSC Adv. 10 31318Google Scholar

    [41]

    Rajasekaran G, Kumar R, Parashar A 2016 Mater. Res. Express 3 035011Google Scholar

    [42]

    Zhang X, Zhang J, Yang M 2020 Solid State Commun. 309 113845Google Scholar

  • [1] ZHANG Yanru, GAO Xiang, NING Hongyang, ZHANG Fujian, SONG Yunyun, ZHANG Zhongqiang, LIU Zhen. Molecular dynamics study on drag reduction mechanism of active gas layer at micro/nano fluid-solid interfaces. Acta Physica Sinica, 2025, 74(12): 124703. doi: 10.7498/aps.74.20250289
    [2] Liu Dong-Jing, Hu Zhi-Liang, Zhou Fu, Wang Peng-Bo, Wang Zhen-Dong, Li Tao. Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation. Acta Physica Sinica, 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [3] Sang Li-Xia, Li Zhi-Kang. Molecular dynamics simulation of thermal transport properties of phonons at interface of Au-TiO2 photoelectrode. Acta Physica Sinica, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [4] Liu Zi-Yi, Chu Fu-Qiang, Wei Jun-Jun, Feng Yan-Hui. Interface thermal conductance and phonon thermal transport characteristics of diamond/carbon nanotube interface. Acta Physica Sinica, 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [5] Liu Dong-Jing, Zhou Fu, Hu Zhi-Liang, Huang Jia-Qiang. Molecular dynamics study of interfacial thermal transport properties of graphene/GaN heterostructure. Acta Physica Sinica, 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [6] Zong Zhi-Cheng, Pan Dong-Kai, Deng Shi-Chen, Wan Xiao, Yang Li-Na, Ma Deng-Ke, Yang Nuo. Mixed mismatch model predicted interfacial thermal conductance of metal/semiconductor interface. Acta Physica Sinica, 2023, 72(3): 034401. doi: 10.7498/aps.72.20221981
    [7] Wang Quan-Jie, Deng Yu-Ge, Wang Ren-Zong, Liu Xiang-Jun. Interface engineering moderated interfacial thermal conductance of GaN-based heterointerfaces. Acta Physica Sinica, 2023, 72(22): 226301. doi: 10.7498/aps.72.20230791
    [8] Liu Dong-Jing, Wang Shao-Ming, Yang Ping. Thermal property of graphene/silicon carbide heterostructure by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [9] Mei Tao, Chen Zhan-Xiu, Yang Li, Zhu Hong-Man, Miao Rui-Can. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel. Acta Physica Sinica, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [10] Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin. Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation. Acta Physica Sinica, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [11] Gao Tan-Hua, Zheng Fu-Chang, Wang Xiao-Chun. Tuning the electronic and magnetic property of semihydrogenated graphene and monolayer boron nitride heterostructure. Acta Physica Sinica, 2018, 67(16): 167101. doi: 10.7498/aps.67.20180538
    [12] Wen Peng, Tao Gang, Ren Bao-Xiang, Pei Zheng. Superplastic deformation mechanism of nanocrystalline copper: a molecular dynamics study. Acta Physica Sinica, 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [13] Tang Wen-Lai, Xiang Nan, Zhang Xin-Jie, Huang Di, Ni Zhong-Hua. Dynamic process and flow-rate regulation mechanism of particle inertial focusing in an asymmetric ally curved microchannel. Acta Physica Sinica, 2015, 64(18): 184703. doi: 10.7498/aps.64.184703
    [14] Gao Tan-Hua. Structural and electronic properties of hydrogenated bilayer silicene. Acta Physica Sinica, 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [15] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [16] Zhang Jin-Ping, Zhang Yang-Yang, Li Hui, Gao Jing-Xia, Cheng Xin-Lu. Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system. Acta Physica Sinica, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [17] Gao Tan-Hua, Wu Shun-Qing, Zhang Peng, Zhu Zi-Zhong. Structural and electronic properties of hydrogenated bilayer boron nitride. Acta Physica Sinica, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [18] Ma Bin, Rao Qiu-Hua, He Yue-Hui, Wang Shi-Liang. Molecular dynamics simulation of tensile deformation mechanism of the single crystal tungsten nanowire. Acta Physica Sinica, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [19] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [20] DAI YONG-BING, SHEN HE-SHENG, ZHANG ZHI-MING, HE XIAN-CHANG, HU XIAO-JUN, SUN FANG-HONG, XIN HAI-WEI. A MOLECULAR DYNAMICS SIMULATION OF DIAMOND/SILICON(001) INTERFACE. Acta Physica Sinica, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
Metrics
  • Abstract views:  463
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2025
  • Accepted Date:  19 August 2025
  • Available Online:  09 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map