-
In quantum resource theories, manipulating and transformation resource states are often challenging due to the presence of noise. Resource manipulation procedures, from high resource states ρ to low resource states ρ', involving asymptotically many copies of states can be considered to overcome the problem. Here, the asymptomatic transformation rate R(ρ→ρ') can characterize the corresponding quantum manipulation power, and can be calculated as the ratio of the copy number of initial states to the copy number of target states. Generally, exact computations of asymptotic transformation rates are challenging, so it is important to establish rigorous and computable bounds on them. Recently, Ganardi et al. show that the transformation rate to any pure state is superadditive for the distillable entanglement. However, it has remained a question whether the transformation rate to any noise state is also superadditive in the general resource theory. Firstly, we study the general superadditive inequalities satisfied by the transformation rate R(ρ→ρ') to any noise stateρ'. In any multiple quantum resource theory, we also show that the bipartite asymptomatic transformation rate obey some distributed relations: when α ≥1,Rα(ρ→ρ') satisfies monogamy relations. Using similar methods, we demonstrate that marginal asymptotic transformation rates and marginal catalytic transformation rates are all satisfies these relations. As a byproduct, we show an equivalence among the asymptomatic transformation rate, marginal asymptotic transformations and marginal catalytic transformations under some restrictions. Here marginal asymptotic transformations and marginal catalytic transformations are special asymptotic transformations, and initial states can be reducible onto target states at nonzero rates. These inequality relations give rise to a new kind of restrictions on the quantum resource distribution and trade off among subsystems. Recently, reversible quantum resource manipulations have been researched, where they have been conjectured that transformations could be executed reversibly in an asymptotic regime. In the future, we will explore a conclusive proof of this conjecture and then study distributions of these reversible manipulations.
-
[1] Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401
[2] Chitambar E, Gour G 2019 Rev. Mod. Phys. 91 025001
[3] Bennett C H, Popescu S, Rohrlich D, Smolin J A, Thapliyal A V 2000 Phys. Rev. A 63 012307
[4] Liu F 2025 Sci. Sin.-Phys. Mech. Astron. 55 240317(in Chinese) [刘锋 2025 中国科学: 物理学 力学 天文学 55 240317]
[5] Wang G, Song X, Liu Y, Wang D 2025 Acta. Phys. Sin. 74 070301(in Chinese) [王光杰,宋学科,叶柳,王栋 2025 74 070301]
[6] Horodecki R, Horodecki P,Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865
[7] Liu F, Gao F, Qin S J, Xie S C, Wen Q Y 20242016 Sci. Rep. 6 20302
[8] Zhang Z,Feng L, Luo S 2024 Phys. Rev. A 110 012462
[9] Streltsov A, Adesso G,Plenio M B 2017 Rev. Mod. Phys. 89 041003
[10] Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1-100
[11] Li P Y, Liu F, Xu Y Q 2018 Quantum Inf. Process.17 18
[12] Garcia R J, Bu K, Jaffe A 2023 P. Natl. Acad. Sci. 120 e2217031120
[13] Shiraishi N, Takagi R 2024 Phys. Rev. Lett. 132 180202
[14] Nielsen M A 1999 Phys. Rev. Lett. 83 436
[15] Ferrari G, Lami L, Theurer T, Plenio M B Commun. Math. Phys. 2023 398 291-351
[16] Ganardi R, Kondra T V, Streltsov A 2024 Phys. Rev. Lett. 133 250201
[17] Zuo H, Liu F 2022 Int. J. Theor. Phys. 61 204
[18] Marvian I 2020 Nat. Commun. 11 25
[19] Horodecki M 2001 Quant. Inf. Comput. 1 3
[20] Wilming H, Gallego R, Eisert J 2017 Entropy 19 241
[21] Marvian I, Spekkens R W 2019 Phys. Rev. Lett. 123 020404
[22] Pawłowski M 2010 Phys. Rev. A 82 032313
[23] Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306
[24] Wang G J, Li Y W, Li L J, Song X K, Wang D 2023 Eur. Phys. J. C 83 801
[25] Zhu X N, Bao G, Jin Z X, Fei S M 2023 Phys. Rev. A 107 052404
[26] Liu F 2016 Commun. Theor. Phys.66 407-410
[27] Liu F, Gao F, Wen Q Y 2015 Sci. Rep. 5 16745
[28] Bai Y K, Xu Y F, Wang Z D 2014 Phys. Rev. Lett. 113 100503
[29] Zhu X N, Fei S M 2014 Phys. Rev. A 90 024304
[30] Sharma H, Mokeev A, Helsen J, Borregaard J 2025 arXiv 2505.05964
[31] Li M, Jia Y, Guo F, Dong H, Qin S, Gao F 2025 Phys. Rev. A 111 052446
[32] Song Y, Wu Y, Wu S, Li D, Wen Q, Qin S, Gao F 2024 Sci. China Phys. Mech. Astron. 67 250311
[33] Li L, Li J, Song Y, Qin S, Wen Q, Gao F 2025 Sci. China Phys. Mech. Astron. 68 210313
[34] Ganardi R, Kondra T V, Ng N H Y, Streltsov A 2025 Phys. Rev. Lett. 135 010202
[35] Yang Y G, Liu B X, Xu G B, Zhou Y H, Shi W M 2023 IEEE Trans. Inf. Forensics Security 18 4034-4045
Metrics
- Abstract views: 39
- PDF Downloads: 0
- Cited By: 0