Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum entanglement entropy of collective excitations in a quasi-one-dimensional Bose-Einstein condensate

QI Ying LIU Yanhong QIAO Haoxue ZHANG Wenxian

Citation:

Quantum entanglement entropy of collective excitations in a quasi-one-dimensional Bose-Einstein condensate

QI Ying, LIU Yanhong, QIAO Haoxue, ZHANG Wenxian
cstr: 32037.14.aps.74.20250808
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Quasi-particle excitation in a Bose-Einstein condensate leads to quantum entanglement between real bosonic atoms in the system. By using spectral expansion method, the eigenvalues and eigenstates of Bogoliubov-de Gennes equation are numerically calculated in a quasi-one-dimensional infinite square well potential. For the low-energy collective excitations of the quasi-particles, we explore the dependence of quantum entanglement entropy of the Bose-Einstein condensate on scattering length. Our results show that the entanglement entropy increases slowly with the increase of the scattering length, and such an increasing trend can be well described by a power function. These results are analogous to those in a one-dimensional uniform BEC, where the entanglement entropy of the Bogoliubov ground state is approximately proportional to the square root of the scattering length. This work provides a viable way for investigating many-particle entanglement in a quasi-one-dimensional trapped Bose-Einstein condensate where the quantum entanglement is closely related to the interaction strength between particles.
      Corresponding author: QIAO Haoxue, qhx@whu.edu.cn ; ZHANG Wenxian, wxzhang@hznu.edu.cn
    • Funds: Project Supported by the National Natural Science Foundation of China (Grant No. 12274331) and the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302100).
    [1]

    Pethick C J, Smith H 2008 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) pp26, 194, 236

    [2]

    Leggett A J 2009 Compendium of Quantum Physics (Berlin: Springer Berlin Heidelberg Press) p77

    [3]

    Carr L D, Clark C W, Reinhardt W P 2000 Phys. Rev. A 62 063610Google Scholar

    [4]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120Google Scholar

    [5]

    Li B, Duan L, Wang S, Yang Z Y 2025 Phys. Lett. A 548 130534Google Scholar

    [6]

    Hayashi N, Isoshima T, Ichioka M, Machida K 1998 Phys. Rev. Lett. 80 2921Google Scholar

    [7]

    Cichy A, Ptok A 2020 J. Phys. Commun. 4 055006Google Scholar

    [8]

    You L, Hoston W, Lewenstein M 1997 Phys. Rev. A 55 R1581Google Scholar

    [9]

    Walczak P B, Anglin J R 2011 Phys. Rev. A 84 013611Google Scholar

    [10]

    Hu B, Huang G X, Ma Y L 2004 Phys. Rev. A 69 063608Google Scholar

    [11]

    焦宸, 简粤, 张爱霞, 薛具奎 2023 72 060302Google Scholar

    Jiao C, Jian Y, Zhang A X, Xue J K 2023 Acta Phys. Sin. 72 060302Google Scholar

    [12]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (10th Anniversary Ed.) (Cambridge: Cambridge University Press) pp571−580

    [13]

    Lambert N, Emary C, Brandes T 2004 Phys. Rev. Lett. 92 073602Google Scholar

    [14]

    Brukner C, Vedral V, Zeilinger A 2006 Phys. Rev. A 73 012110Google Scholar

    [15]

    Osborne T J, Nielsen M A 2002 Phys. Rev. A 66 032110Google Scholar

    [16]

    Vidal J, Dusuel S, Barthel T 2007 J. Stat. Mech. 2007 P01015Google Scholar

    [17]

    Yoshino T, Furukawa S, Ueda M 2021 Phys. Rev. A 103 043321Google Scholar

    [18]

    Ueda M 2010 Fundamentals and New Frontiers of Bose-Einstein Condensation (World Scientific) pp33−72

    [19]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [20]

    Landau L 1949 Phys. Rev. 75 884Google Scholar

    [21]

    Blaizot J P, Ripka G 1986 Quantum Theory of Finite Systems (Cambridge: MIT Press

    [22]

    Brauner T 2010 Symmetry 2 609Google Scholar

    [23]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

  • 图 1  弱相互作用与强相互作用下准一维无限深方势阱里BdG方程的最低3个能量本征态, 其中散射长度分别为$ 0.1 \;{\mathrm{nm}} $(上图)与$ 5 \;{\mathrm{nm}} $(下图)

    Figure 1.  Three lowest-energy eigenstates of BdG equation in a quasi-one-dimensional box potential. The weak and strong interaction are denoted by the scattering length being 0.1 nm (upper panels) and 5 nm (lower panels).

    图 2  Bogoliubov基态与第一激发态下系统的量子纠缠熵随散射长度的变化. 粒子数与势阱参数与图1相同

    Figure 2.  Dependence of quantum entanglement entropy for the Bogoliubov ground state and first excited state on the scattering length. The particle number $ N $ and trap parameters are the same as those in Fig. 1.

    表 1  拟合参数, 其中SSE (sum of square error)表示误差平方和

    Table 1.  Fitting parameters (SSE, sum of square error).

    数据 $ c_1 $ $ c_2 $ $ c_3 $ SSE
    $ S_0 $ 4.669×105 0.7803 0 2.3327×10–4
    $ S_1 $ 1.9058×105 0.7158 0.0482 7.482×10–4
    DownLoad: CSV
    Baidu
  • [1]

    Pethick C J, Smith H 2008 Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) pp26, 194, 236

    [2]

    Leggett A J 2009 Compendium of Quantum Physics (Berlin: Springer Berlin Heidelberg Press) p77

    [3]

    Carr L D, Clark C W, Reinhardt W P 2000 Phys. Rev. A 62 063610Google Scholar

    [4]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120Google Scholar

    [5]

    Li B, Duan L, Wang S, Yang Z Y 2025 Phys. Lett. A 548 130534Google Scholar

    [6]

    Hayashi N, Isoshima T, Ichioka M, Machida K 1998 Phys. Rev. Lett. 80 2921Google Scholar

    [7]

    Cichy A, Ptok A 2020 J. Phys. Commun. 4 055006Google Scholar

    [8]

    You L, Hoston W, Lewenstein M 1997 Phys. Rev. A 55 R1581Google Scholar

    [9]

    Walczak P B, Anglin J R 2011 Phys. Rev. A 84 013611Google Scholar

    [10]

    Hu B, Huang G X, Ma Y L 2004 Phys. Rev. A 69 063608Google Scholar

    [11]

    焦宸, 简粤, 张爱霞, 薛具奎 2023 72 060302Google Scholar

    Jiao C, Jian Y, Zhang A X, Xue J K 2023 Acta Phys. Sin. 72 060302Google Scholar

    [12]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (10th Anniversary Ed.) (Cambridge: Cambridge University Press) pp571−580

    [13]

    Lambert N, Emary C, Brandes T 2004 Phys. Rev. Lett. 92 073602Google Scholar

    [14]

    Brukner C, Vedral V, Zeilinger A 2006 Phys. Rev. A 73 012110Google Scholar

    [15]

    Osborne T J, Nielsen M A 2002 Phys. Rev. A 66 032110Google Scholar

    [16]

    Vidal J, Dusuel S, Barthel T 2007 J. Stat. Mech. 2007 P01015Google Scholar

    [17]

    Yoshino T, Furukawa S, Ueda M 2021 Phys. Rev. A 103 043321Google Scholar

    [18]

    Ueda M 2010 Fundamentals and New Frontiers of Bose-Einstein Condensation (World Scientific) pp33−72

    [19]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [20]

    Landau L 1949 Phys. Rev. 75 884Google Scholar

    [21]

    Blaizot J P, Ripka G 1986 Quantum Theory of Finite Systems (Cambridge: MIT Press

    [22]

    Brauner T 2010 Symmetry 2 609Google Scholar

    [23]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

Metrics
  • Abstract views:  2035
  • PDF Downloads:  32
  • Cited By: 0
Publishing process
  • Received Date:  21 June 2025
  • Accepted Date:  25 July 2025
  • Available Online:  28 August 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map