-
Vortex dynamics in Bose-Einstein condensates (BECs) are crucial for understanding quantum coherence, superfluidity, and topological phenomena. In this work, we investigate the influence of barrier parameters in a rotating double-well potential on the formation and evolution of hidden vortices, aiming to elucidate the regulatory mechanisms of barrier width and height on vortex dynamics. By numerically solving the dissipative Gross-Pitaevskii equation for a two-dimensional BEC system confined strongly along the z-axis, we analyze the density distribution, phase distribution, vortex number, and average angular momentum under varying barrier widths and heights. The results show that increasing barrier width significantly promote the formation of hidden vortices, with the total number of visible and hidden vortices still satisfying the Feynman rule. For larger barrier widths, hidden vortices exhibite an oscillatory distribution due to enhanced vortex interactions, as shown in Fig. (a) with vortices marked by red dots. In contrast, barrier height has a limited impact on hidden vortex numbers when above a critical threshold (i.e., the height sufficient to completely separate the condensate), but below this critical threshold, hidden vortex cores become visible, reducing the threshold for vortex formation. A particularly striking finding is the efficacy of a temporary barrier strategy: by reducing V0 from 4ħωx to 0 within a rotating double-well trap, stable vortex states with four visible vortices are generated at Ω= 0.5ωx, as shown in Fig. (b). Under the same parameter conditions, it is impossible to generate a stable state containing vortices at the same Ω by directly using the rotating harmonic trap. In other words, a temporary barrier within a rotating harmonic trap effectively introduced phase singularities, facilitating stable vortex states at lower rotation frequencies than those required in a purely harmonic trap. These findings demonstrate that precise tuning of barrier parameters enables effective control of vortex states, offering theoretical guidance for experimental observation of hidden vortices and advancing the understanding of quantum vortex dynamics.
-
Keywords:
- Bose-Einstein condensate /
- vortex /
- double-well potential
-
[1] Smerzi A, Fantoni S, Giovanazzi S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950
[2] Albiez M, Gati R, Folling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
[3] Hall B V, Whitlock S, Anderson R, Hannaford P, Sidorov A I 2007 Phys. Rev. Lett. 98 030402
[4] Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G, Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401
[5] Hofferberth S, Lesanovsky I, Fischer B, Verdu J, Schmiedmayer J 2006 Nature Phys. 2 710
[6] Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V, Spielman J B 2009 Phys. Rev. Lett. 102 130401
[7] Spielman I B 2009 Phys. Rev. A 79 063613
[8] Madison K W, Chevy F, Wohlleben W, Dalibard J 2000 Phys. Rev. Lett. 84 806
[9] Abo-Shaeer J R, Raman C, Vogels J M, Ketterle W 2001 Science 292 476
[10] Haljan P C, Coddington I, Engels P, Cornell E A 2001 Phys. Rev. Lett. 87 210403
[11] Hodby E, Hechenblaikner G, Hopkins S A, Marago O M, Foot C J 2001 Phys. Rev. Lett. 88 010405
[12] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature (London) 435 1047
[13] Weiler C N, Neely T W, Scherer D R, Bradley A S, Davis M J, Anderson B P 2008 Nature (London) 455 948
[14] Fetter A L 2009 Rev. Mod. Phys. 81 647
[15] Cooper N R 2008 Adv. Phys. 57 539
[16] Dalfovo F, Giorgini S, Guilleumas M, Pitaevskii L, Stringari S 1997 Phys. Rev. A. 56 3840
[17] Stringari S 2001 Phys. Rev. Lett. 86 4725
[18] Penckwitt A A, Ballagh R J, Gardiner C W 2002 Phys. Rev. Lett. 89 260402
[19] Baym G, Pethick C J 2004 Phys. Rev. A 69 043619
[20] Aftalion A, Blanc X, Dalibard J 2005 Phys. Rev. A 71 023611
[21] Mizushima T, Machida K 2010 Phys. Rev. A 81 053605
[22] Ostrovskaya E A, Kivshar Y S 2004 Phys. Rev. Lett. 93 160405
[23] Piazza F, Collins L A, Smerzi A 2009 Phys. Rev. A 80 021601
[24] Wen L, Xiong H, Wu B 2010 Phys. Rev. A 82 053627
[25] Wen L, Luo X 2012 Laser Phys. Lett. 9 618
[26] Sabari S 2017 Phys. Lett. A 381 3062
[27] Ishfaq A B, Bishwajyoti D 2024 Phys. Rev. E 110 024208
[28] Wu B, Niu Q 2003 New J. Phys. 5 104
[29] Liu M, Wen L H, Xiong H W, Zhan M S 2006 Phys. Rev. A 73 063620
[30] Wen L H, Wang J S, Feng J, Hu H Q 2008 J. Phys. B 41 135301
Metrics
- Abstract views: 13
- PDF Downloads: 0
- Cited By: 0