Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on high-pressure structures and electronic properties of Mg-Al alloys based on density functional theory

LI Jinlong WANG Dan WANG Hao ZHANG Leilei GENG Huayun

Citation:

Theoretical study on high-pressure structures and electronic properties of Mg-Al alloys based on density functional theory

LI Jinlong, WANG Dan, WANG Hao, ZHANG Leilei, GENG Huayun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Magnesium and aluminum are abundant metals in the Earth's crust and widely utilized in industrial engineering. Under high pressure, these elements can form elemental compounds into single substances, resulting in a variety of crystal structures and electronic properties. In this study, the possible structures of magnesium-aluminum alloys are systematically investigated in a pressure range of 0–500 GPa by using the first-principles structure search method, with energy and electronic structure calculations conducted using the VASP package. Bader charge analysis elucidates atomic and interstitial quasi-atom (ISQ) valence states, while lattice dynamics are analyzed using the PHONOPY package via the small-displacement supercell approach. Eight stable phases(MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-P4/mmm, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1, Mg3Al-P63/mmc, Mg3Al-Fm-3m) and two metastable phases (Mg4Al-I4/m, Mg5Al-P-3m1) are identified. The critical pressures and stable intervals for phase transitions are precisely determined. Notably, MgAl-Fd-3m, Mg2Al-P-3m1, Mg4Al-I4/m and Mg5Al-P-3m1 represent newly predicted structures. Analysis of electronic localization characteristics reveals that six stable structures(MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1 and Mg3Al-P63/mmc) exhibit electronic properties of electrides. The ISQs primarily originate from charge transfer of Mg atoms. In the metastable phase Mg4Al-I4/m, Al atoms are predicted to achieve an Al5–valence state, filling the p shell. This finding demonstrates that by adjusting the Mg/Al ratio and pressure conditions, a transition from traditional electrides to high negative valence states can be realized, offering new insights into the development of novel high-pressure functional materials. Furthermore, all Mg-Al compounds display metallic behaviors, with their stability attributed to Al-p-d orbital hybridization, which significantly contributes to the Al-3p/3d orbitals near the Fermi level. Additionally, LA-TA splitting is observed in MgAl3-Pm-3m, with a splitting value of 45.49 cm–1, confirming the unique regulatory effect of ISQs on lattice vibrational properties. These results elucidate the rich structural and electronic properties of magnesium-aluminum alloys as electrodes, offering deeper insights into their behavior under high pressure and inspiring further exploration of structural and property changes in high-pressure alloys composed of light metal elements and p-electron metals.
  • 图 1  MgmAln 体系在给定压强下的形成焓(热力学稳定的化合物用实心符号表示)

    Figure 1.  Formation enthalpy of the MgmAln system at a given pressure. Thermodynamically stable compounds are indicated by solid symbols.

    图 2  MgmAln化合物的压力-组分相图(黑色斜线区域表明对应的相在该压强范围是亚稳态)

    Figure 2.  Pressure-composition phase diagram of MgmAln compounds, with the black hatched line area indicating that the corresponding phase is metastable within this pressure range.

    图 3  (a) MgAl3P63/mmc相对于Pm-3m相在0—500 GPa范围内的焓差曲线; (b) MgAl的Pmmb相和Fd-3m相对于P4/mmm相在0—500 GPa范围内的焓差曲线; (c) Mg3Al的Fm-3m相对于P63/mmc相在0—500 GPa范围内的焓差曲线

    Figure 3.  (a) Enthalpy difference curve of the P63/mmc phase of MgAl3 relative to the Pm-3m phase within the range of 0—500 GPa; (b) the enthalpy difference curves of the Pmmb phase and Fd-3m phase of MgAl relative to the P4/mmm phase within the range of 0—500 GPa; (c) the enthalpy difference curve of the Fm-3m phase of Mg3Al relative to the P63/mmc phase within the range of 0—500 GPa.

    图 4  稳定MgmAln化合物的晶体结构图(橙色和蓝色球分别代表Mg原子和Al原子) (a) MgAl3-Pm-3m在100 GPa的结构; (b) MgAl3-P63/mmc在200 GPa的结构; (c) MgAl-P4/mmm在40 GPa的结构; (d) MgAl-Pmmb在95 GPa的结构; (e) MgAl-Fd-3m在350 GPa的结构; (f) Mg2Al-P-3m1在500 GPa的结构; (g) Mg3Al-P63/mmc在50 GPa的结构; (h) Mg3Al-Fm-3m在350 GPa的结构

    Figure 4.  Crystal structure of the predicted stable MgmAln compounds: (a) MgAl3-Pm-3m at 100 GPa; (b) MgAl3-P63/mmc at 200 GPa; (c) MgAl-P4/mmm at 40 GPa; (d) MgAl-Pmmb at 95 GPa; (e) MgAl-Fd-3m at 350 GPa; (f) Mg2Al-P-3m1 at 500 GPa; (g) Mg3Al-P63/mmc at 50 GPa; (h) Mg3Al-Fm-3m at 350 GPa. Orange and blue spheres represent Mg and Al atoms, respectively.

    图 5  高压下MgmAln 结构的声子色散曲线 (a), (b) 在0 GPa和100 GPa下的MgAl3-Pm-3m结构; (c)—(e) 在100 GPa, 200 GPa 和250 GPa下的MgAl3-P63/mmc结构; (f), (g) 在0 GPa和40 GPa下的MgAl-P4/mmm结构; (h)—(j) 在50 GPa, 95 GPa和150 GPa下的MgAl-Pmmb结构; (k)—(m) 在150 GPa, 350 GPa和500 GPa下的MgAl-Fd-3m结构; (n), (o) 在55 GPa和500 GPa下的Mg2Al-P-3m1结构; (p), (q) 在0 GPa和50 GPa下的Mg3Al-P63/mmc结构; (r)—(t) 在60 GPa, 350 GPa和500 GPa下的Mg3Al-Fm-3m结构; (u), (v) 在0 GPa和500 GPa下的Mg4Al-I4/m结构; (w), (x) 在35 GPa和500 GPa下的Mg5Al-P-3m1结构

    Figure 5.  Phonon dispersion curves of the predicted MgmAln structures under high pressure: (a), (b) MgAl3-Pm-3m at 0 GPa and 100 GPa; (c)–(e) MgAl3-P63/mmc at 100 GPa, 200 GPa and 250 GPa; (f), (g) MgAl-P4/mmm at 0 GPa and 40 GPa; (h)–(j) MgAl-Pmmb at 50 GPa, 95 GPa and 150 GPa; (k)–(m) MgAl-Fd-3m at 150 GPa, 350 GPa and 500 GPa; (n), (o) Mg2Al-P-3m1 at 55 GPa and 500 GPa; (p), (q) Mg3Al-P63/mmc at 0 GPa and 50 GPa; (r)–(t) Mg3Al-Fm-3m at 60 GPa, 350 GPa and 500 GPa; (u), (v) Mg4Al-I4/m at 0 GPa and 500 GPa; (w), (x) Mg5Al-P-3m1 at 35 GPa and 500 GPa.

    图 6  MgmAln化合物的原子间距离直方图 (a) 100 GPa的MgAl3-Pm-3m结构; (b) 200 GPa的MgAl3-P63/mmc结构; (c) 40 GPa的MgAl-P4/mmm结构; (d) 95 GPa的MgAl-Pmmb结构; (e) 350 GPa的MgAl-Fd-3m结构; (f) 500 GPa的Mg2Al-P-3m1结构; (g) 50 GPa的Mg3Al-P63/mmc结构; (h) 350 GPa的Mg3Al-Fm-3m结构

    Figure 6.  Histograms of interatomic distances for MgmAln structures: (a) MgAl3-Pm-3m at 100 GPa; (b) MgAl3-P63/mmc at 200 GPa; (c) MgAl-P4/mmm at 40 GPa; (d) MgAl-Pmmb at 95 GPa;(e) MgAl-Fd-3m at 350 GPa; (f) Mg2Al-P-3m1 at 500 GPa; (g) Mg3Al-P63/mmc at 50 GPa; (h) Mg3Al-Fm-3m at 350 GPa.

    图 7  稳定的MgmAln化合物的电子局域化函数(ELF)图 (a) 100 GPa的MgAl3-Pm-3m结构, ELF等值面为0.65; (b) 200 GPa的MgAl3-P63/mmc结构, 等值面为0.70; (c) 40 GPa的MgAl-P4/mmm结构, 等值面为0.70; (d) 95 GPa的MgAl-Pmmb结构, 等值面为0.70; (e) 350 GPa的MgAl-Fd-3m结构, 等值面为0.70; (f) 500 GPa的Mg2Al-P-3m1结构, 等值面为0.70; (g) 50 GPa的Mg3Al-P63/mmc结构, 等值面为0.60; (h) 350 GPa的Mg3Al-Fm-3m结构, 等值面为0.65. 橙色球和蓝色球分别代表Mg原子和Al原子, 粉色小球代表间隙准原子中心

    Figure 7.  Electron localization function (ELF) isosurface of stable MgmAln compounds: (a) MgAl3-Pm-3m structure at 100 GPa, ELF isosurface is 0.65; (b) MgAl3-P63/mmc structure at 200 GPa, isosurface is 0.70; (c) MgAl-P4/mmm structure at 40 GPa, isosurface is 0.70; (d) MgAl-Pmmb structure at 95 GPa, isosurface is 0.70; (e) MgAl-Fd-3m structure at 350 GPa, isosurface is 0.70; (f) Mg2Al-P-3m1 structure at 500 GPa, isosurface is 0.70; (g) Mg3Al-P63/mmc structure at 50 GPa, isosurface is 0.60; (h) Mg3Al-Fm-3m structure at 350 GPa, isosurface is 0.65. Orange and blue spheres represent Mg and Al atoms respectively, and pink small spheres represent the center of interstitial quasiatoms.

    图 8  100 GPa压力下MgAl3-Pm-3m结构的声子色散曲线, 图中蓝色点线是不考虑间隙电子影响的结果, 红色点划线是考虑了Bader电荷近似作为原子/ISQ有效电荷引起的库仑长程相互作用导致的LA-TA劈裂结果

    Figure 8.  Phonon dispersion curves of the MgAl3-Pm-3m structure at 100 GPa. The blue dotted line in the figure represents the results without considering the influence of interstitial electrons, while the red dashed line shows the LA-TA splitting induced by the long-range interaction of approximating Bader charges of atom/ISQ.

    图 9  稳定的MgmAln化合物的电子投影态密度(PDOS)图 (a) 100 GPa的 MgAl3-Pm-3m结构; (b) 200 GPa的MgAl3-P63/mmc结构; (c) 40 GPa的 MgAl-P4/mmm结构; (d) 95 GPa的 MgAl-Pmmb结构; (e) 350 GPa的MgAl-Fd-3m结构; (f) 500 GPa的 Mg2Al- P-3m1结构; (g) 50 GPa的Mg3Al-P63/mmc结构; (h) 350 GPa的 Mg3Al-Fm-3m结构

    Figure 9.  Electronic projected density of states (PDOS) diagrams of stable MgmAln compounds: (a) MgAl3-Pm-3m at 100 GPa; (b) MgAl3-P63/mmc at 200 GPa; (c) MgAl-P4/mmm at 40 GPa; (d) MgAl-Pmmb at 95 GPa; (e) MgAl-Fd-3m at 350 GPa; (f) Mg2Al-P-3m1 at 500 GPa; (g) Mg3Al-P63/mmc at 50 GPa; (h) Mg3Al-Fm-3m at 350 GPa.

    图 10  稳定的 MgmAln化合物的能带图 (a) 100 GPa的MgAl3-Pm-3m结构; (b) 200 GPa的MgAl3-P63/mmc结构; (c) 40 GPa的MgAl-P4/mmm结构; (d) 95 GPa的MgAl-Pmmb结构; (e) 350 GPa的MgAl-Fd-3m结构; (f) 500 GPa的Mg2Al-P-3m1结构; (g) 50 GPa的Mg3Al-P63/mmc结构; (h) 350 GPa的Mg3Al-Fm-3m结构

    Figure 10.  Band structure of stable MgmAln compounds: (a) MgAl3-Pm-3m at 100 GPa; (b) MgAl3-P63/mmc at 200 GPa; (c) MgAl-P4/mmm at 40 GPa; (d) MgAl-Pmmb at 95 GPa; (e) MgAl-Fd-3m at 350 GPa; (f) Mg2Al- P-3m1 at 500 GPa; (g) Mg3Al-P63/mmc at 50 GPa; (h) Mg3Al-Fm-3m at 350 GPa.

    表 1  给定压强下 MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-P4/mmm, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1, Mg3Al-P63/mmc和Mg3Al-Fm-3m中Mg, Al原子的价态、间隙准原子的电荷量(e/atom)和总的局域电荷量(e/cell)

    Table 1.  Valence state of Mg and Al atoms and the charge quantity per site (e/atom) of interstitial quasiatom, as well as the total local charge quantity per cell (e/cell) in MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-P4/mmm, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1, Mg3Al-P63/mmc and Mg3Al-Fm-3m at given pressure.

    PhaseMg/atomAl/atomISQ/(e·site–1)ISQ/(e·site–1)
    Pm-3m MgAl3
    (100 GPa)
    +1.48+1.070.394.68
    P63/mmc MgAl3
    (200 GPa)
    +1.45+1.65ISQ1: 1.69; ISQ2: 1.57;
    ISQ3: 1.60; ISQ4: 1.56
    12.81
    P4/mmm MgAl
    (40 GPa)
    +1.47–1.47
    Pmmb MgAl
    (95 GPa)
    +1.44–0.40ISQ1: 0.53; ISQ2: 0.512.09
    Fd-3m MgAl
    (350 GPa)
    +1.36+1.531.4423.07
    P-3m1 Mg2Al
    (500 GPa)
    +1.32+0.70ISQ1: 0.35; ISQ2: 0.263.33
    P63/mmc Mg3Al
    (50 GPa)
    +1.37–3.960.150.30
    Fm-3m Mg3Al
    (350 GPa)
    +1.31–3.95
    I4/m Mg4Al
    (300 GPa)
    +1.23–4.91
    I4/m Mg4Al
    (350 GPa)
    +1.23–1.760.796.32
    DownLoad: CSV

    表 A1  MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-P4/mmm, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1, Mg3Al-P63/mmc, Mg3Al-Fm-3m, Mg4Al-I4/m和Mg5Al-P-3m1在给定压强下的晶格参数和原子位置

    Table A1.  Lattice parameters and atomic coordinates of MgAl3-Pm-3m, MgAl3-P63/mmc, MgAl-P4/mmm, MgAl-Pmmb, MgAl-Fd-3m, Mg2Al-P-3m1, Mg3Al-P63/mmc, Mg3Al-Fm-3m, Mg4Al-I4/m and Mg5Al-P-3m1 at given pressure.

    Phase Lattice
    parameters/Å
    Atom Site Atomic coordinates
    Pm-3m MgAl3
    (100 GPa)
    a = b = c = 3.4807,
    α = β = γ = 90°
    Mg 1a (0.00000 0.00000 0.00000)
    Al 3c (0.50000 0.50000 0.00000)
    P63/mmc MgAl3
    (200 GPa)
    a = b = 4.6192,
    c = 3.7511,
    α = β = 90°,
    γ = 120°
    Mg 2d (0.33333 0.66667 0.75000)
    Al 6h (0.16575 0.33150 0.25000)
    P4/mmm MgAl
    (40 GPa)
    a = b = 2.6468,
    c = 3.8386,
    α = β = γ = 90°
    Mg 1d (0.50000 0.50000 0.50000)
    Al 1a (0.00000 0.00000 0.00000)
    Pmmb MgAl
    (95 GPa)
    a = 4.0475, b = 2.4798, c = 4.3490,
    α = β = γ = 90°
    Mg 2f (0.25000 0.50000 0.33732)
    Al 2e (0.25000 0.00000 0.83940)
    Fd-3m MgAl
    (350 GPa)
    a = b = c = 4.8837,
    α = β = γ = 90°
    Mg 8a (0.50000 0.50000 0.00000)
    Al 8b (0.50000 0.00000 0.00000)
    P-3m1 Mg2Al
    (500 GPa)
    a = b = 3.3248,
    c = 2.0093,
    α = β = 90°,
    γ=120°
    Mg 2d (0.33333 0.66667 0.49763)
    Al 1a (0.00000 0.00000 0.00000)
    P63/mmc Mg3Al
    (50 GPa)
    a = b = 5.3284,
    c = 4.3022,
    α = β = 90°,
    γ = 120°
    Mg 6h (0.16784 0.83216 0.25000)
    Al 2d (0.66667 0.33333 0.25000)
    Fm-3m Mg3Al
    (350 GPa)
    a = b = c = 4.8981,
    α = β = γ = 90°
    Mg 4b (0.50000 0.50000 0.50000)
    8c (0.75000 0.75000 0.75000)
    Al 4a (0.00000 0.00000 0.00000)
    I4/m Mg4Al
    (500 GPa)
    a = b = 4.4643,
    c = 3.2322,
    α = β = γ = 90°
    Mg 8h (0.09518 0.70193 0.50000)
    Al 2a (0.00000 0.00000 0.00000)
    P-3m1 Mg5Al
    (500 GPa)
    a = b = 3.3132,
    c = 4.0870,
    α = β = 90°,
    γ = 120°
    Mg 2d (0.66667 0.33333 0.31434)
    2d (0.66667 0.33333 0.81145)
    1a (0.00000 0.00000 0.00000)
    Al 1b (0.00000 0.00000 0.50000)
    DownLoad: CSV
    Baidu
  • [1]

    Grochala W, Hoffmann R, Feng J, Ashcroft N W 2007 Angew. Chem. Int. Ed. 46 3620Google Scholar

    [2]

    Pickard C J, Needs R J 2011 Phys. Rev. Lett. 107 87201Google Scholar

    [3]

    Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L 2017 Nat. Chem. 9 440Google Scholar

    [4]

    田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰 2022 71 017102Google Scholar

    Tian C, Lan J X, Wang C L, Zhai P F, Liu J 2022 Acta Phys. Sin. 71 017102Google Scholar

    [5]

    熊浩智, 王云江 2025 74 086101Google Scholar

    Xiong H Z, Wang Y J 2025 Acta Phys. Sin. 74 086101Google Scholar

    [6]

    Miao M, Hoffmann R 2015 J. Am. Chem. Soc. 137 3631Google Scholar

    [7]

    Dye J L 1990 Science 247 663Google Scholar

    [8]

    Dye J L 2003 Science 301 607Google Scholar

    [9]

    Toda Y, Matsuishi S, Hayashi K, Ueda K, Kamiya T, Hirano M, Hosono H 2004 Adv. Mater. 16 685Google Scholar

    [10]

    李凡, 张忻, 张久兴 2019 68 206801Google Scholar

    Li F, Zhang X, Zhang J X 2019 Acta Phys. Sin. 68 206801Google Scholar

    [11]

    Menamparambath M M, Park J H, Yoo H S, Patole S P, Yoo J B, Kim S W, Baik S 2014 Nanoscale 6 8844Google Scholar

    [12]

    He H M, Li Y, Yang H, Yu D, Li S Y, Wu D, Hou J H, Zhong R L, Zhou Z J, Gu F L 2017 J. Phys. Chem. C 121 958Google Scholar

    [13]

    Guo Z X, Bergara A, Zhang X H, Li X, Ding S C, Yang G C 2024 Phys. Rev. B 109 134505Google Scholar

    [14]

    Wei J H, Zhong T, Sun J C, Liu H Y, Zhu L, Zhang S T 2025 Phys. Rev. B 111 184508Google Scholar

    [15]

    Wang C, Liu P Y, Liu Z, Cui T 2024 Results Phys. 60 107703Google Scholar

    [16]

    Wang D, Song H X, Hao Q D, Yang G F, Wang H, Zhang L L, Chen Y, Chen X R, Geng H Y 2024 J. Phys. Chem. C 129 689

    [17]

    Hu J P, Xu B, Yang S Y, Guan S, Ouyang C Y, Yao Y G 2015 ACS Appl. Mater. Interfaces 7 24016Google Scholar

    [18]

    Chen G H, Bai Y, Li H, Li Y, Wang Z H, Ni Q, Liu L, Wu F, Yao Y G, Wu C 2017 ACS Appl. Mater. Interfaces 9 6666Google Scholar

    [19]

    Druffel D L, Pawlik J T, Sundberg J D, McRae L M, Lanetti M G, Warren S C 2020 J. Phys. Chem. Lett. 11 9210Google Scholar

    [20]

    Ye T N, Li J, Kitano M, Hosono H 2017 Green Chem. 19 749Google Scholar

    [21]

    Toda Y, Hirayama H, Kuganathan N, Torrisi A, Sushko P V, Hosono H 2013 Nat. Commun. 4 2378Google Scholar

    [22]

    Zhang X H, Yang G C 2020 J. Phys. Chem. Lett. 11 3841Google Scholar

    [23]

    Zhou J, Feng Y P, Shen L 2020 Phys. Rev. B 102 180407Google Scholar

    [24]

    Lee S Y, Hwang J Y, Park J, Nandadasa C N, Kim Y, Bang J, Lee K, Lee K H, Zhang Y, Ma Y 2020 Nat. Commun. 11 1526Google Scholar

    [25]

    Hirayama M, Matsuishi S, Hosono H, Murakami S 2018 Phys. Rev. X 8 031067

    [26]

    Hosono H, Kitano M 2021 Chem. Rev. 121 3121Google Scholar

    [27]

    Miao M S, Hoffmann R 2014 Acc. Chem. Res. 47 1311Google Scholar

    [28]

    Sui X L, Wang J F, Duan W H 2019 J. Phys. Chem. C 123 5003Google Scholar

    [29]

    Yan J Q, Ochi M, Cao H B, Saparov B, Cheng J G, Uwatoko Y, Arita R, Sales B C, Mandrus D G 2018 J. Phys. : Condens. Matter 30 135801Google Scholar

    [30]

    Lu Y F, Wang J J, Li J, Wu J Z, Kanno S, Tada T, Hosono H 2018 Phys. Rev. B 98 125128Google Scholar

    [31]

    Wang X M, Wang Y, Wang J J, Pan S N, Lu Q, Wang H T, Xing D Y, Sun J 2022 Phys. Rev. Lett. 129 246403Google Scholar

    [32]

    Nakashima P N, Smith A E, Etheridge J, Muddle B C 2011 Science 331 1583Google Scholar

    [33]

    Liu C, Nikolaev S A, Ren W, Burton L A 2020 J. Mater. Chem. C 8 10551Google Scholar

    [34]

    Pickard C J, Needs R J 2010 Nat. Mater. 9 624Google Scholar

    [35]

    Li P F, Gao G Y, Wang Y C, Ma Y M 2010 J. Phys. Chem. C 114 21745Google Scholar

    [36]

    Zhu Q, Oganov A R, Lyakhov A O 2013 Phys. Chem. Chem. Phys. 15 7696Google Scholar

    [37]

    Miao M S, Wang X L, Brgoch J, Spera F, Jackson M G, Kresse G, Lin H Q 2015 J. Am. Chem. Soc. 137 14122Google Scholar

    [38]

    Li C, Yang W G, Sheng H W 2022 Phys. Rev. Mater. 6 033601Google Scholar

    [39]

    Li C, Li W W, Zhang X L, Du L C, Sheng H W 2022 Phys. Chem. Chem. Phys. 24 12260Google Scholar

    [40]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007Google Scholar

    [41]

    Polsin D N, Fratanduono D E, Rygg J R, Lazicki A, Smith R F, Eggert J H, Gregor M C, Henderson B H, Delettrez J A, Kraus R G 2017 Phys. Rev. Lett. 119 175702Google Scholar

    [42]

    Wang Y C, Lv J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [43]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [44]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124

    [45]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227Google Scholar

    [46]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172Google Scholar

    [47]

    Kohn W, Sham L J 1965 Phys. Rev. 137 A1697Google Scholar

    [48]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [49]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [50]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [51]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [52]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [53]

    Yu M, Trinkle D R 2011 J. Chem. Phys. 134

    [54]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [55]

    Olijnyk H, Holzapfel W B 1985 Phys. Rev. B 31 4682Google Scholar

    [56]

    Akahama Y, Nishimura M, Kinoshita K, Kawamura H, Ohishi Y 2006 Phys. Rev. Lett. 96 045505Google Scholar

    [57]

    Tambe M J, Bonini N, Marzari N 2008 Phys. Rev. B 77 172102Google Scholar

    [58]

    Owen E A, Liu Y H 1947 Lond. Edinb. Dublin Philos. Mag. J. Sci. 38 354Google Scholar

    [59]

    Lyubimtsev A L, Baranov A I, Fischer A, Kloo L, Popovkin B A 2002 J. Alloys Compd. 340 167Google Scholar

    [60]

    Chang L-C 1951 Acta Cryst. Sect. A 4 320

    [61]

    Kuriyama K, Saito S, Iwamura K 1979 J. Phys. Chem. Solids 40 457Google Scholar

    [62]

    Williams A 1989 J. Phys. : Condens. Matter 1 2569Google Scholar

    [63]

    Zhang L L, Wu Q, Li S R, Sun Y, Yan X Z, Chen Y, Geng H Y 2021 ACS Appl. Mater. Interfaces 13 6130Google Scholar

    [64]

    Zhang L L, Geng H Y, Wu Q 2021 Matter Radiat. Extremes 6 038403Google Scholar

    [65]

    Kang M G, Fang S A, Ye L D, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G 2020 Nat. Commun. 11 4004Google Scholar

  • [1] Zhang Chao-Jiang, Xu Hong-Guang, Xu Xi-Ling, Zheng Wei-Jun. Electronic structures, chemical bonds, and stabilities of ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters: Anion photoelectron spectroscopy and theoretical calculations. Acta Physica Sinica, doi: 10.7498/aps.70.20201351
    [2] Li Ya-Sha, Sun Lin-Xiang, Zhou Xiao, Chen Kai, Wang Hui-Yao. Structure and excitation characteristics of C5F10O under external electric field based on density functional theory. Acta Physica Sinica, doi: 10.7498/aps.69.20191455
    [3] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, doi: 10.7498/aps.68.20181754
    [4] Li Ya-Sha, Xie Yun-Long, Huang Tai-Huan, Xu Cheng, Liu Guo-Cheng. Molecular structure and properties of salt cross-linked polyethylene under external electric field based on density functional theory. Acta Physica Sinica, doi: 10.7498/aps.67.20180808
    [5] Jiang Yuan-Qi, Peng Ping. Electronic structures of stable Cu-centered Cu-Zr icosahedral clusters studied by density functional theory. Acta Physica Sinica, doi: 10.7498/aps.67.20180296
    [6] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, doi: 10.7498/aps.65.018201
    [7] Wu Hong, Li Feng. Mechanisms on the GeH/ interactions in germanene/germanane bilayer for tuning band structures. Acta Physica Sinica, doi: 10.7498/aps.65.096801
    [8] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, doi: 10.7498/aps.62.036301
    [9] Li Tao, Tang Yan-Lin, Ling Zhi-Gang, Li Yu-Peng, Long Zhen-Wen. Influence of external electric field on the molecular structure and electronic spectrum of paranitrochlorobenzene. Acta Physica Sinica, doi: 10.7498/aps.62.103103
    [10] Song Jian, Li Feng, Deng Kai-Ming, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Wu Hai-Ping. Density functional study on the stability and electronic structure of single layer Si6H4Ph2. Acta Physica Sinica, doi: 10.7498/aps.61.246801
    [11] Chen Jun, Meng Da-Qiao, Du Ji-Guang, Jiang Gang, Gao Tao, Zhu Zheng-He. Molecular structures and molecular spectra for plutonium oxides. Acta Physica Sinica, doi: 10.7498/aps.59.1658
    [12] Qi Kai-Tian, Yang Chuan-Lu, Li Bing, Zhang Yan, Sheng Yong. Density functional theory study on TinLa(n=1—7) clusters. Acta Physica Sinica, doi: 10.7498/aps.58.6956
    [13] Yang Jian, Wang Ni-Ying, Zhu Dong-Jiu, Chen Xuan, Deng Kai-Ming, Xiao Chuan-Yun. Density functional calculation of the geometric and magnetic properties of MPb10(M=Ti,V,Cr,Cu,Pd) clusters. Acta Physica Sinica, doi: 10.7498/aps.58.3112
    [14] Tang Chun-Mei, Chen Xuan, Deng Kai-Ming, Hu Feng-Lan, Huang De-Cai, Xia Hai-Yan. The evolution of the structure and electronic properties of the fullerene derivatives C60(CF3)n(n=2, 4, 6, 10): A density functional calculation. Acta Physica Sinica, doi: 10.7498/aps.58.2675
    [15] Cao Qing-Song, Deng Kai-Ming, Chen Xuan, Tang Chun-Mei, Huang De-Cai. Density functional study on the geometric and electronic properties of MC20F20 (M=Li, Na, Be, Mg). Acta Physica Sinica, doi: 10.7498/aps.58.1863
    [16] Jiao Yu-Qiu, Zhao Kun, Lu Gui-Wu. Density functional theory studies on spectral properties of H3PAuPh and (H3PAu)2(1,4-C6H4)2. Acta Physica Sinica, doi: 10.7498/aps.57.1592
    [17] Bai Yu-Jie, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Chen Xuan, Tan Wei-Shi, Liu Yu-Zhen, Huang De-Cai. Density functional calculations on the geometric and electronic structures of the endohedral fullerene H2@C60 and its dimmer. Acta Physica Sinica, doi: 10.7498/aps.57.3684
    [18] Jiang Yan-Ling, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Tan Wei-Shi, Huang De-Cai, Liu Yu-Zhen, Wu Hai-Ping. Density functional study on the structural and electronic properties of fullerene-barbituric acid and its dimmer. Acta Physica Sinica, doi: 10.7498/aps.57.3690
    [19] Yao Ming-Zhen, Liang Ling, Gu Mu, Duan Yong, Ma Xiao-Hui. . Acta Physica Sinica, doi: 10.7498/aps.51.125
    [20] TONG HONG-YONG, GU MU, TANG XUE-FENG, LIANG LING, YAO MING-ZHEN. ELECTRONIC STRUCTURES OF PbWO4 CRYSTAL CALCULATED IN TERMS OF DENSITY FUNCTIONAL THEORY. Acta Physica Sinica, doi: 10.7498/aps.49.1545
Metrics
  • Abstract views:  229
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2025
  • Accepted Date:  30 July 2025
  • Available Online:  17 September 2025
  • /

    返回文章
    返回
    Baidu
    map