Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and spin-dependent transport properties of carbon-based molecular magnetic tunnel junctions

DI Maoyun LI Pengle FU Lin XU Yongjie LI Jin KUANG Yafei HU Jifan

Citation:

Design and spin-dependent transport properties of carbon-based molecular magnetic tunnel junctions

DI Maoyun, LI Pengle, FU Lin, XU Yongjie, LI Jin, KUANG Yafei, HU Jifan
cstr: 32037.14.aps.74.20250880
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Spintronics holds profound significance for the development of future electronic devices, among which magnetic tunnel junctions (MTJs) represent a crucial spintronic device. In order to achieve excellent performance, such as higher tunnel magnetoresistance (TMR) and spin filtering effects, the molecular MTJs (MMTJs) have been investigated. Here, we adopt 6,6,12-graphyne (6,6,12-GY) nanodots as the barrier material in the central scattering region, while zigzag-edged graphene nanoribbons (ZGNRs) are adopted as electrode materials. Two kinds of devices, denoted as M1n and M2n, are constructed, which differ in the termination of the nanodots in the central scattering region. Due to the fact that the magnetization directions of the two ZGNRs electrodes can be set to be parallel (P) or antiparallel (AP), both M1n and M2n devices exhibit two different magnetic configurations. In this work, the structures are optimized using first-principles calculations based on density functional theory (DFT), as implemented in the Vienna ab-initio simulation package (VASP). By combining DFT with the nonequilibrium Green’s function (NEGF) method, the spin transport properties of MMTJs are studied.The calculated results show that all devices achieve high TMR effects, with their values reaching up to 108% in M1n and 109% in M2n. The total current calculations indicate that a distinct difference emerges between the P and AP configurations after applying a bias voltage, which leads to a superior TMR. These findings offer valuable insights into the future development of highly sensitive spintronic devices. From the perspective of spin current, it can be observed that for both M1n and M2n devices with AP configuration, opposite-direction spin currents can be obtained by applying positive or negative bias voltage. Namely, in the AP configuration, both devices achieve the ±100% spin polarization (SP), indicating a dual spin filtering effect. In the P configuration, the spin-up and spin-down currents in M1n exhibit similar trends with the bias increasing, while M2n can produce a pure spin-down current with the number of nanodots increasing. The 100% spin filtering efficiency achieved in these carbon-based devices is of great significance for increasing the storage density and operation speed of future spintronic devices. Notably, apart from the bias voltage, the spin current of M2n can also be controlled by switching the magnetization direction of the electrodes. In addition, the current in M2n is much smaller than that in M1n, which implies low power consumption in device applications. Our investigation on the spin-dependent transport properties of 6,6,12-GY-based MMTJs paves the way for promising spintronic applications of carbon-based materials.
      Corresponding author: FU Lin, fulin@fudan.edu.cn ; HU Jifan, hujifan@tyust.edu.cn
    • Funds: Project supported by the Foundational Research Program of Shanxi Province, China (Grant Nos. 202203021222202, 202203021212324), the PhD Research Startup Foundation of Shanxi Province, China (Grant Nos. 20232053, 20232054), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (Grant No. 2022L304), and PhD Research Startup Foundation of Taiyuan University of Science and Technology, China (Grant Nos. 20222049, 20222037).
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Cheng H, Liu Z, Yao K 2011 Appl. Phys. Lett. 98 172107Google Scholar

    [3]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2016 Carbon 98 204Google Scholar

    [4]

    Zatko V, Dubois S M M, Godel F, Galbiati M, Peiro J, Sander A, Carretero C, Vecchiola A, Collin S, Bouzehouane K, Servet B, Petroff F, Charlier J C, Martin M B, Dlubak B, Seneor P 2022 ACS Nano 16 14007Google Scholar

    [5]

    Han Z, Hao H, Zheng X, Zeng Z 2023 Phys. Chem. Chem. Phys. 25 6461Google Scholar

    [6]

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868Google Scholar

    [7]

    Dai J Q 2016 J. Appl. Phys. 120 074102Google Scholar

    [8]

    Hu L, Wu X, Feng Y, Liu Y, Xu Z, Gao G 2022 Nanoscale 14 7891Google Scholar

    [9]

    Li J, Xu L C, Yang Y, Liu X, Yang Z 2018 Carbon 132 632Google Scholar

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [11]

    Xu X, Liu C, Sun Z, Cao T, Zhang Z, Wang E, Liu Z, Liu K 2018 Chem. Soc. Rev. 47 3059Google Scholar

    [12]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571Google Scholar

    [13]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [14]

    Rao S S, Jammalamadaka S N, Stesmans A, Moshchalkov V V, van Tol J, Kosynkin D V, Higginbotham-Duque A, Tour J M 2012 Nano Lett. 12 1210Google Scholar

    [15]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [16]

    Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804Google Scholar

    [17]

    王天会, 李昂, 韩柏 2019 68 187102Google Scholar

    Wang T H, Li A, Han B 2019 Acta Phys. Sin. 68 187102Google Scholar

    [18]

    Cao L, Li X, Jia C, Liu G, Liu Z, Zhou G 2018 Carbon 127 519Google Scholar

    [19]

    Li J, Yang Z, Xu L, Yang Y, Liu X 2019 J. Mater. Chem. C 7 1359Google Scholar

    [20]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [23]

    Zheng X, Chen M, Xie Y 2022 Phys. Chem. Chem. Phys. 24 24328Google Scholar

    [24]

    Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lü C, Bournel A, Zhao W 2021 Nanoscale 13 862Google Scholar

    [25]

    Iqbal M Z, Hussain G, Siddique S, Iqbal M W 2017 J. Magn. Magn. Mater. 441 39Google Scholar

    [26]

    Yamaguchi D, Kitaori A, Nagaosa N, Tokura Y 2025 Adv. Mater. 37 2420614Google Scholar

    [27]

    Ishizuka H, Nagaosa N 2020 Nat. Commun. 11 2986Google Scholar

    [28]

    Feng Y, Liu N, Gao G 2021 Appl. Phys. Lett. 118 112407Google Scholar

    [29]

    Li Y, Ma Z, Song X, Yang Z, Xu L C, Liu R, Li X, Liu X, Hu D 2017 Comput. Mater. Sci. 136 1Google Scholar

    [30]

    Gao Y, Xu L, Li A, Ouyang F 2023 Results Phys. 46 106315Google Scholar

    [31]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [32]

    Zhao P, Wu Q H, Liu H Y, Liu D S, Chen G 2014 J Mater. Chem. C 2 6648Google Scholar

  • 图 1  器件各组分和器件整体的结构图 (a) 6,6,12-GY的结构图, 紫色和绿色碳原子表示裁剪的两种不同纳米点类型; (b) ZGNRs的自旋差分电荷和能带结构图, 红色和蓝色表示净自旋向上或自旋向下; (c) 设计的两种类型的MMTJs

    Figure 1.  Structure of MMTJs and its isolated components: (a) The structure of 6,6,12-GY, and purple and green atoms show two kinds of nanodots; (b) the spin difference densities and band structures of ZGNRs, where the red (blue) regions and the corresponding lines represent the spin-up (down) components; (c) the schematic diagrams of two kinds of MMTJs.

    图 2  P和AP构型下的自旋差分密度 (a) 器件M11; (b) 器件M21. 红色和蓝色表示净的自旋向上和自旋向下分量. 等值面设置为±0.008 e3

    Figure 2.  Spin difference densities $\Delta \rho $ of the P and AP spin configurations: (a) M11 device; (b) M21 device. The red and blue colors represent the spin-up and spin-down components. The isosurface values are taken as ±0.008 e3.

    图 3  P和AP构型下的总电流 (a)—(c) 器件M1n; (d)—(f) 器件M2n

    Figure 3.  Total currents of the P and AP spin configurations: (a)–(c) M1n devices; (d)–(f) M2n devices.

    图 4  器件在整个偏压下的TMR曲线图 (a)—(c) 器件M1n; (d)—(f) 器件M2n

    Figure 4.  TMR curves of devices in whole bias voltage: (a)–(c) M1n devices; (d)–(f) M2n devices.

    图 5  器件M1n的自旋电流 (a)—(c) P构型; (d)—(f) AP构型

    Figure 5.  Spin currents of M1n devices: (a)–(c) P spin configurations; (d)–(f) AP spin configurations.

    图 6  器件在不同偏压下的自旋极化率 (a)—(c) 器件M1n; (d)—(f) 器件M2n

    Figure 6.  Spin polarization ratios of devices at different bias voltage: (a)–(c) M1n devices; (d)–(f) M2n devices.

    图 7  器件M2n的自旋电流 (a)—(c) P构型; (d)—(f) AP构型

    Figure 7.  Spin currents of M2n devices: (a)–(c) P spin configurations; (d)–(f) AP spin configurations.

    图 8  器件M1n在P和AP构型下的自旋相关透射谱, 虚线表示偏压窗 (a) M11, (c) M12和 (e) M13在P构型下的透射谱; (b) M11, (d) M12和 (f) M13在AP构型下的透射谱

    Figure 8.  Spin-resolved transmission spectra of M1n devices in P and AP spin configurations, the black dash lines indicate the bias window. The P configurations of (a) M11, (c) M12 and (e) M13; AP configurations of (b) M11, (d) M12 and (f) M13.

    图 9  器件M2n在P和AP构型下的自旋相关透射谱, 虚线表示偏压窗 (a) M11, (c) M12和 (e) M13在P构型下的透射谱; (b) M11, (d) M12和 (f) M13在AP构型下的透射谱

    Figure 9.  Spin-resolved transmission spectra of M2n devices in P and AP spin configurations, the black dash lines indicate the bias window. The P configurations of (a) M21, (c) M22 and (e) M23; AP configurations of (b) M21, (d) M22 and (f) M23.

    图 10  器件M11在P和AP构型下的PDOS图 (a), (c) ${V_{\text{b}}} = 0.2\;{\rm V} $; (b), (d) ${V_{\text{b}}} = 0.5\;{\rm V} $

    Figure 10.  PDOS of the M11 device in P and AP spin configurations: (a), (c) ${V_{\text{b}}} = 0.2\;{\rm V}$; (b), (d) ${V_{\text{b}}} = 0.5\;{\rm V}$.

    图 11  器件M21在P和AP构型下的PDOS图 (a), (c) ${V_{\text{b}}} = 0.2\;{\rm V} $; (b), (d) ${V_{\text{b}}} = 0.5\;{\rm V} $

    Figure 11.  PDOS of M21 device in P and AP spin configurations: (a), (c) ${V_{\text{b}}} = 0.2\;{\rm V}$; (b), (d) ${V_{\text{b}}} = 0.5\;{\rm V}$.

    Baidu
  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Cheng H, Liu Z, Yao K 2011 Appl. Phys. Lett. 98 172107Google Scholar

    [3]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q, Tang G P 2016 Carbon 98 204Google Scholar

    [4]

    Zatko V, Dubois S M M, Godel F, Galbiati M, Peiro J, Sander A, Carretero C, Vecchiola A, Collin S, Bouzehouane K, Servet B, Petroff F, Charlier J C, Martin M B, Dlubak B, Seneor P 2022 ACS Nano 16 14007Google Scholar

    [5]

    Han Z, Hao H, Zheng X, Zeng Z 2023 Phys. Chem. Chem. Phys. 25 6461Google Scholar

    [6]

    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K 2004 Nat. Mater. 3 868Google Scholar

    [7]

    Dai J Q 2016 J. Appl. Phys. 120 074102Google Scholar

    [8]

    Hu L, Wu X, Feng Y, Liu Y, Xu Z, Gao G 2022 Nanoscale 14 7891Google Scholar

    [9]

    Li J, Xu L C, Yang Y, Liu X, Yang Z 2018 Carbon 132 632Google Scholar

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [11]

    Xu X, Liu C, Sun Z, Cao T, Zhang Z, Wang E, Liu Z, Liu K 2018 Chem. Soc. Rev. 47 3059Google Scholar

    [12]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571Google Scholar

    [13]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar

    [14]

    Rao S S, Jammalamadaka S N, Stesmans A, Moshchalkov V V, van Tol J, Kosynkin D V, Higginbotham-Duque A, Tour J M 2012 Nano Lett. 12 1210Google Scholar

    [15]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687Google Scholar

    [16]

    Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804Google Scholar

    [17]

    王天会, 李昂, 韩柏 2019 68 187102Google Scholar

    Wang T H, Li A, Han B 2019 Acta Phys. Sin. 68 187102Google Scholar

    [18]

    Cao L, Li X, Jia C, Liu G, Liu Z, Zhou G 2018 Carbon 127 519Google Scholar

    [19]

    Li J, Yang Z, Xu L, Yang Y, Liu X 2019 J. Mater. Chem. C 7 1359Google Scholar

    [20]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [23]

    Zheng X, Chen M, Xie Y 2022 Phys. Chem. Chem. Phys. 24 24328Google Scholar

    [24]

    Yang W, Cao Y, Han J, Lin X, Wang X, Wei G, Lü C, Bournel A, Zhao W 2021 Nanoscale 13 862Google Scholar

    [25]

    Iqbal M Z, Hussain G, Siddique S, Iqbal M W 2017 J. Magn. Magn. Mater. 441 39Google Scholar

    [26]

    Yamaguchi D, Kitaori A, Nagaosa N, Tokura Y 2025 Adv. Mater. 37 2420614Google Scholar

    [27]

    Ishizuka H, Nagaosa N 2020 Nat. Commun. 11 2986Google Scholar

    [28]

    Feng Y, Liu N, Gao G 2021 Appl. Phys. Lett. 118 112407Google Scholar

    [29]

    Li Y, Ma Z, Song X, Yang Z, Xu L C, Liu R, Li X, Liu X, Hu D 2017 Comput. Mater. Sci. 136 1Google Scholar

    [30]

    Gao Y, Xu L, Li A, Ouyang F 2023 Results Phys. 46 106315Google Scholar

    [31]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422Google Scholar

    [32]

    Zhao P, Wu Q H, Liu H Y, Liu D S, Chen G 2014 J Mater. Chem. C 2 6648Google Scholar

  • [1] LI Xiaobo, LIU Shuaiqi, HUANG Yan, MA Yu, DING Wence. Regulation of effect of halogen and oxygen-containing element doping on negative differential resistance and spin-filtering of α-2-graphyne nanoribbon. Acta Physica Sinica, 2025, 74(5): 057101. doi: 10.7498/aps.74.20241518
    [2] Fan Yi-Jie, Zhang Ruan, Chen Yu, Cai Xing-Han. Tuning magnetoresistance of chromium chloride tunnel junction through the interface and multi-field effect. Acta Physica Sinica, 2024, 73(13): 137302. doi: 10.7498/aps.73.20240431
    [3] Lu Bin, Wang Da-Wei, Chen Yu-Lei, Cui Yan, Miao Yuan-Hao, Dong Lin-Peng. Capacitance model for nanowire gate-all-around tunneling field-effect-transistors. Acta Physica Sinica, 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [4] Lü Jie, Fang He-Nan, Lü Tao-Tao, Sun Xing-Yu. Theoretical study on temperature-bias phase diagram of MgO-based magnetic tunnel junctions. Acta Physica Sinica, 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
    [5] Yang Wei, Han Jiang-Chao, Cao Yuan, Lin Xiao-Yang, Zhao Wei-Sheng. Efficient spin injection in Fe3GeTe2/h-BN/graphene heterostructure. Acta Physica Sinica, 2021, 70(12): 129101. doi: 10.7498/aps.70.20202136
    [6] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [7] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [8] Xiang Yang, Zheng Jun, Li Chun-Lei, Guo Yong. Spin filter effect of germanene nanoribbon controlled by local exchange field and electric field. Acta Physica Sinica, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [9] Zhang Hua-Lin, Sun Lin, Wang Ding. Electromagnetic properties of zigzag graphene nanoribbons with single-row line defect. Acta Physica Sinica, 2016, 65(1): 016101. doi: 10.7498/aps.65.016101
    [10] Zhu Zhen, Li Chun-Xian, Zhang Zhen-Hua. Magnetic device properties for a heterojunction based on functionalized armchair-edged graphene nanoribbons. Acta Physica Sinica, 2016, 65(11): 118501. doi: 10.7498/aps.65.118501
    [11] Zeng Shao-Long, Li Ling, Xie Zheng-Wei. Tunneling times in double spin-filter junctions. Acta Physica Sinica, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [12] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [13] Chen Ying, Hu Hui-Fang, Wang Xiao-Wei, Zhang Zhao-Jin, Cheng Cai-Ping. Rectifying behaviors induced by B/N-doping in similar right triangle graphene devices. Acta Physica Sinica, 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [14] Jin Feng, Zhang Zhen-Hua, Wang Cheng-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Twisting effects on energy band structures and transmission behaviors of graphene nanoribbons. Acta Physica Sinica, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [15] Li Jun, Zhang Zhen-Hua, Wang Chen-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang. Rolling effects on electronic characteristics for graphene nanoribbons. Acta Physica Sinica, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [16] Zhang Yu, Liu Lian-Qing, Jiao Nian-Dong, Xi Ning, Wang Yue-Chao, Dong Zai-Li. Modification of zigzag graphene nanoribbons by patterning vacancies. Acta Physica Sinica, 2012, 61(13): 137101. doi: 10.7498/aps.61.137101
    [17] Liu Jiang-Tao, Huang Jie-Hui, Xiao Wen-Bo, Hu Ai-Rong, Wang Jian-Hui. The influence of gate voltage on electron transport in the graphene field-effect transistor under strong laser field. Acta Physica Sinica, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [18] Hu Xiao-Hui, Xu Jun-Min, Sun Li-Tao. Research of electronic and magnetic properties on gold doped zigzag graphene nanoribbons. Acta Physica Sinica, 2012, 61(4): 047106. doi: 10.7498/aps.61.047106
    [19] Tao Qiang, Hu Xiao-Ying, Zhu Pin-Wen. Electronic structure of zigzag graphene nanoribbin terminated by hydroxyl. Acta Physica Sinica, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [20] Wang Xue-Mei, Liu Hong. Band structures of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(4): 047102. doi: 10.7498/aps.60.047102
Metrics
  • Abstract views:  437
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  05 July 2025
  • Accepted Date:  01 September 2025
  • Available Online:  09 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map